

POWERCLI COOKBOOK
FOR VMWARE VSAN
VERSION 1.7

TECHNICAL WHITE PAPER - DECEMBER 2019

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 2

Table of Contents
Introduction 5
Expectations 6
Getting Started 8

Tool Selection ... 8
Installing PowerShell ... 11
Installing PowerCLI .. 11

Configuration Recipes 13
Enabling vSAN on a vSphere Cluster ... 13
Adding hosts to a vSAN cluster ... 15

New Hosts .. 15
Existing Hosts .. 16
Converting a Cluster to a Stretched Cluster .. 18

Configuring vSAN Networking .. 20
Tagging an existing VMkernel adapter .. 20
Creating a new VMkernel Adapter on a vSphere Standard Switch 22
Using a vSphere Distributed Switch for vSAN .. 23
Upgrading a vSphere Distributed Switch and enabling NIOC 28
Setting Static Routes for Layer 3 vSAN Routing .. 32
Tagging a vSAN Interface for vSAN Witness Traffic 33

Claiming Disks on vSAN Hosts .. 33
vSAN Performance Service .. 39
vSAN Build Recommendation Credentials ... 40
Deduplication and Compression .. 42
vSAN Encryption .. 44
Configuring NTP ... 47
Configuring vSphere HA ... 49
Configuring vSphere DRS .. 50
Configuring Guest TRIM & UNMAP Support ... 50
Setting the Default Storage Policy for a vSAN Datastore 51
Assigning a vSAN License to a Cluster .. 53
Setting Automatic Rebalance Options in vSAN 6.7 Update 3 55

Operational Recipes 56
Host Maintenance & Tasks ... 56

Host Maintenance Mode What-If in vSAN 6.7 U3 .. 57
Patch Management with Update Manager .. 59
Setting the Cluster Baseline for vSAN 6.7 Update 3 61
Installing a VIB on a vSAN Host ... 63
Rebooting a vSAN Host ... 64
Powering off a vSAN Cluster ... 65
Removing Disk Groups from Hosts no longer in a vSAN Cluster 70
Moving VMs off of a vSAN Host without DRS ... 71

vSAN Storage Policies .. 72
Creating new vSAN Storage Polices .. 72
Backing up vSAN Storage Policies ... 75
Restoring vSAN Storage Policies ... 76
Applying vSAN Storage Policies to a VM or its Drives 77
Changing the Storage Policy for All Objects with a Given Policy 79

vSAN Stretched Cluster Operations .. 82

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 3

Changing the “Preferred” Site ... 83
Patching a vSAN Stretched Cluster ... 85
Swapping the vSAN Witness Host ... 88

vSAN Encryption Operations .. 90
Shallow Rekey ... 90
Changing the KMS Server ... 91
Deep Rekey ... 92

Reporting Recipes 94
Disk Utilization .. 94
Useable vSAN Capacity Based on Storage Policy ... 98
vSAN Datastore default Storage Policy .. 99
Per-VM Space Utilization .. 101
Per-VM Storage Policy Compliance .. 104
Physical device enclosure location .. 107
Sample RVC vsan.vm_object_info Report ... 109
vSAN Encryption Health.. 112

Appendix A – PowerCLI samples for RVC commands 115
vsan.apply_license_to_cluster ... 115
vsan.check_limits ... 115
vsan.cluster_info .. 116
vsan.cluster_set_default_policy ... 118
vsan.debug.mob (host level) .. 118
vsan.disable_vsan_on_cluster ... 118
vsan.disks_info ... 118
vsan.disk_stats ... 119
vsan.enable_vsan_on_cluster .. 120
vsan.enter_maintenance_mode ... 120
vsan.health.cluster_debug_multicast .. 120
vsan.health.cluster_proxy_configure ... 120
vsan.health.cluster_proxy_status .. 121
vsan.health.cluster_rebalance ... 121
vsan.health.cluster_repair_immediately ... 121
vsan.health.cluster_status .. 121
vsan.health.hcl_update_db ... 122
vsan.health.health_check_interval_configure .. 122
vsan.health.health_check_interval_status .. 122
vsan.health.silent_health_check_configure ... 122
vsan.health.silent_health_check_status ... 122
vsan.host_evacuate_data ... 122
vsan.host_exit_evacuation ... 123
vsan.host_info .. 123
vsan.object_info (also vsan.vm_object_info) ... 125
vsan.ondisk_upgrade (also vsan.v2_ondisk_upgrade) 125
vsan.resync_dashboard (also vsan.perf.resync_dashboard) 125
vsan.stretchedcluster.config_witness .. 126
vsan.stretchedcluster.remove_witness ... 126
vsan.stretchedcluster.witness_info .. 126

Document Summary 127
References 127

Additional Documentation ... 127

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 4

VMware Contact Information .. 127
About the Author .. 127

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 5

Introduction
Typically, vSAN management is performed through the vSphere®
Client. Tasks can include those such as initial configuration, ongoing
maintenance, and reporting of capacity, performance, or health of
vSAN. The Web Client provides comprehensive element management
of each component of a vSAN cluster.
While most element management is easily accomplished with the
vSphere Client, performing many repeatable tasks across multiple
clusters is largely a manual process.

While many aspects of vSAN management are automated, such as
periodic health checks, error reporting, and capacity reporting, these
automated tasks are specific to each individual vSAN cluster, and often
have to be repeated many times when managing multiple independent
vSAN clusters.

Consistency and repeatability is a challenge when performing tasks
manually. It is quite common to leverage tools such as an Application
Programming Interface (API) along with code to execute tasks in a
consistent and repeatable fashion across one or more environments.

Microsoft® officially released PowerShell, in November of 2006, as a
task automation and configuration framework. PowerShell gave
administrators the ability to use a new command shell and scripting
language to accomplish administrative tasks on one or more Microsoft
Windows® systems more easily through the use of specialized .NET
classes, called cmdlets, to perform specific operations.

PowerShell could be then be expanded through the addition of third-
party modules that include one or more cmdlets and functions to
accomplish additional application-centric operations. It was
advantageous for vendors with Windows applications or services to
provide their own PowerShell tie-ins, because administrators could
accomplish both Windows and Application tasks using the same
framework.

VMware PowerCLI is one such third-party add-on to Microsoft
PowerShell. Virtualization administrators have long managed VMware
vSphere environments, often comprised of tens, hundreds, or
thousands of Microsoft Windows guests using PowerShell and
PowerCLI. VMware PowerCLI over 600 cmdlets for managing and
automating vSphere, vSAN, and other VMware products and solutions.

Using the PowerShell framework, along with PowerCLI, provides a
robust platform to manage VMware vSphere environments at any
scale.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 6

Expectations
This document is intended to assist you with understanding types of
things that can be managed programmatically through the VMware
PowerCLI as they relate to vSAN.
It is neither comprehensive in showing all actions nor prescriptive in
showing the only way to accomplish these tasks. This document will
focus on the use of PowerCLI.
Throughout the document we will alternate showing what types of
tasks can be done through the vSphere Client interface or ESXi
command line, and then how to achieve the same result through
PowerCLI. None of the included code samples are supported by
VMware and are merely representative of ways to tasks could be
accomplished.

The samples included in this document have little to no error handling.
Should the foundation of these code samples be used for production
code, it is recommended to include proper error handling.

Many vSAN tasks can be natively accomplished through shipping
PowerCLI cmdlets. This document uses the most recent version of
PowerCLI available (PowerCLI 11.2) as of this writing.

In some examples however, native cmdlets are not available to perform
the required steps. For cases such as this, the vSAN Management API is
directly accessed using the Get-VsanView cmdlet.

vSAN Management API
The vSAN Management API extends upon the vSphere API.

This API is exposed by both vCenter Server managing vSAN, as well as
VMware ESXi hosts. Setup and all configuration of aspects of vSAN, as
well as runtime state, is available by utilizing the vSAN Management
API.

There are a variety of vSphere Managed Objects exposed by the
vSAN Management API that provide functionality specific to vCenter
Server, ESXi, or both. These Managed Objects are:

Managed Object Function Available

VsanVcDiskManagementSystem vSAN Cluster configuration and query APIs for disks vCenter

VsanVcStretchedClusterSystem vSAN Stretched Cluster related configuration and query APIs vCenter

VsanVcClusterConfigSystem vSAN Cluster configuration setting and query APIs vCenter

VsanVcClusterHealthSystem vSAN Cluster health related configuration and query APIs vCenter

VsanSpaceReportSystem vSAN Cluster space usage related query APIs vCenter

VsanPerformanceManager vSAN Cluster performance related configuration & query APIs vCenter &

ESXi

VsanObjectSystem vSAN Cluster setting APIs for object status query and storage policy vCenter &

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 7

ESXi

HostVsanSystem Host level vSAN related configuration and query APIs ESXi

HostVsanHealthSystem Host level vSAN Health related configuration and query APIs ESXi

VsanUpgradeSystem Used to perform and monitor vSAN on-disk format upgrades.

VsanUpgradeSystemEx deprecates VsanUpgradeSystem

vCenter

VsanUpgradeSystemEx vCenter

 Table 1 – Managed Objects presented by the vSAN API

Reliance on additional VMware APIs
It is important to also consider that vSAN is a component of vSphere. In
many cases, configuration or management tasks require calls to other
APIs in the VMware stack, such as the vSphere Management API.

Such tasks could include tagging a VMkernel for a specific traffic type
(such as “vSAN Traffic”) or configuring a host’s NTP settings. These are
vSphere related PowerCLI operations that could be used for
environments that do not have vSAN.

Managing vSAN with PowerCLI is essentially managing the combination
of vSphere and vSAN.

This document focuses primarily on using PowerCLI 11.1 with vSAN 6.7
and vSAN 6.7 Update 1. Many of the scripts could potentially work with
previous versions of vSphere and vSAN, but are not guaranteed to.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 8

Getting Started
PowerShell, or the more recent PowerShell Core are a primary
requirement to be able to use PowerCLI. But which do you choose?

PowerShell is an included component of Microsoft Windows desktop
and server operating systems. Different releases of Microsoft Windows
have an included release of PowerShell. These may or may not be part
of a default installation but can be easily added at a later time.

Native Windows applications are often tied to the specific version of
Windows they are included with. Upgrading a Windows operating
system to a newer release is often required to add functionality or
allow compatibility with more recently released applications.

Since its initial introduction, updates to PowerShell have largely been
available across different Windows operating systems. Administrators
that are using older Windows operating systems, such as Windows 7
or 8 have been able to use the most recent updates to PowerShell.

Even with the ability to run newer PowerShell builds on older operating
systems, there was still a requirement for Windows to be able to use
PowerShell. Administrators that largely used non-Windows systems
would often have to use a Windows “administrative console” or “jump-
box” to use PowerShell.

In 2016, Microsoft released PowerShell Core for use on non-Windows
operating systems. The release of PowerShell Core removed the
requirement for a Windows operating system for many of the core
capabilities of PowerShell. However, there are still some operations that
still require PowerShell, because the functionality has not been added
to PowerShell Core.

Tool Selection
Now that we know that PowerShell and PowerShell Core are two
similar frameworks, which one is the best to use? And once we’ve
selected one of those, what’s the best coding tool to create and modify
scripts?

PowerShell or PowerShell Core?
When choosing either PowerShell or PowerShell Core, it is important to
consider what you want to be able to accomplish from a PowerCLI
perspective.

Why is this important? Keep in mind that not all PowerShell modules
have been ported to PowerShell Core. At the same time, not all
PowerCLI module capabilities have been ported over either.

Each new release of PowerCLI closes the gap of which operations are
available when used in conjunction with PowerShell versus PowerShell
Core. With the release of PowerCLI 11, support for vCloud Director was
added. Alternatively, some operations may still require PowerShell to
function, such as PowerCLI ImageBuilder capabilities.

Take the types of tasks you wish to accomplish into consideration
when deciding whether to use PowerShell or PowerShell Core.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 9

Refer to the PowerCLI documentation under Automation Tools on the
VMware Code site (https://code.vmware.com/tools) for the most up to
date information about the requirements of PowerCLI.

Coding Tools?
PowerShell scripts typically are just text files with a .ps1 extension. They
can be edited with any one of many text editors. There is no real
requirement to have any particular application for creating PowerShell
Scripts.

Using a text editor
Good old-fashioned Notepad in Windows is an example of a simple
editor that can be used to write PowerShell scripts. If using a Mac,
TextEdit is a similar offering that can suffice as well.

While these can be used accomplish the task of writing scripts, there
are alternatives that may provide a more robust experience.

Notice in the above illustration that this editor (Notepad++) natively
highlights syntax of the code being written.

Text editors that have the ability to highlight syntax natively can make
the scripting process significantly easier, especially when
troubleshooting.

Using an Integrated Scripting Environment
Included with more recent releases of Windows, Microsoft included an
Integrated Scripting Environment, or ISE, to help with the scripting
process.

Windows PowerShell ISE goes a bit further than a simple text editor
that highlights code syntax.

https://code.vmware.com/tools

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 10

The Integrated Scripting Environment adds additional capabilities like
providing “command completion”, variable property completion,
“bracket matching” as code is being written, and the ability to highly
code in the editor and execute it in the session below.

The Windows PowerShell ISE adds debugging and a console to actively
validate the code being written from within the same interface.

With all of its integrated features, using an ISE can streamline the
process of creating and testing PowerShell code. The Windows
PowerShell ISE is only available on Windows platforms.

For those that wish to use an alternate ISE for environments such as
Linux or Mac OS X (as well as Windows), Microsoft released Visual
Studio Code. Visual Studio Code is a free open-source code editor that
has many of the same features as the Windows PowerShell ISE, and
more, such as adding extensions to further its capabilities. An additional
benefit of Visual Studio Code is that it supports many languages other
than PowerShell.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 11

With the ability to run on multiple platforms and the ability to add third-
party extensions, Visual Studio Code has largely replaced Windows
PowerShell ISE.

Installing PowerShell
Microsoft’s documentation is the best reference for getting started with
the installation of PowerShell on various platforms.

Detailed instructions for installing Windows PowerShell or PowerShell
Core can be found on the Microsoft docs site:
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-
powershell?view=powershell-6

Installing PowerCLI
PowerCLI was originally distributed as a binary that had to be
downloaded from VMware.com. Currently, PowerCLI can be installed
from the PowerShell Gallery from a PowerShell session:

Install-Module -Name VMware.PowerCLI

If the account installing doesn’t have administrative credentials,
PowerCLI can be installed in the Scope of the Current User:

Install-Module -Name VMware.PowerCLI -Scope:CurrentUser

More detailed PowerCLI resources can be found on VMware’s Code
site: https://code.vmware.com/web/dp/tool/vmware-powercli/.

PowerCLI Recipes for vSAN

‘Recipes’ are included in this document to detail the process of how
one would go about creating PowerCLI scripts for vSAN.

https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-6
https://code.vmware.com/web/dp/tool/vmware-powercli/

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 12

These will primarily be code snippets included in this document. Each
recipe will include a link to a competed sample script in the respective
summary section.

The majority of code listed in this document can be used on both
PowerShell and PowerShell Core platforms unless otherwise indicated.

Important Note: The code samples included in this document are
not supported by VMware. The code included is only provided as
sample code for the purpose of demonstrating different tasks using
PowerCLI.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 13

Configuration Recipes
Configuration of vSAN is a great place to start, as all environments
need to be properly configured.

A few recipes that will be covered in this section include some tasks
that are vSphere related (because vSAN is part of vSphere) and some
tasks that are uniquely specific to vSAN.

The recipes that will be covered include:

• Enabling vSAN on a new or existing Cluster

• Adding hosts to the vSAN Cluster

• Configuring vSAN Networking

• Claiming Disks for use by vSAN

• Configuring HA and DRS

• Configuring Deduplication and Compression

• Configuring vSAN Encryption

• Configuring the vSAN Performance Service

Enabling vSAN on a vSphere Cluster
For a vSphere Cluster to provide services, those services must be
enabled on the vSphere Cluster. Services include vSphere Availability,
vSphere Distributed Resource Scheduling, and vSAN.

Each of these services must be enabled for the Cluster to use them. In
the vSphere UI this can be easily accomplished during cluster creation –

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 14

The vSphere Cluster Wizard above has a few possible inputs, which
include:

• Name

• Location (typically a Datacenter)

• vSphere DRS setting

• vSphere HA setting

• vSAN setting
These are attributes for the cluster.

Creating a cluster in PowerCLI, we must also specify these:

New-Cluster -Name "Cluster" -Location "Remote-Datacenter"
-HAEnabled -DrsEnabled -VsanEnabled

Or vSAN can be enabled after the cluster has been created:

This wizard will walk you through the process of enabling vSAN on the
vSphere Cluster, as well as enable additional settings, claim disks,
create fault domains, and select a vSAN Witness Host if using 2 Node
or Stretched Clusters.

The vSAN Configuration Wizard is accomplishing each of these tasks
through separate API calls. Using PowerCLI to do the same will take
several more steps.

Enabling vSAN on an existing cluster adds the vSAN service

Get-Cluster -Name “vSAN” | Set-Cluster -Name "Cluster" -VsanEnabled
$true -Confirm:$false

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 15

Before attempting to do this in PowerCLI, let’s consider what the
Cluster Wizard is prompting for. The wizard has options for the cluster
name, the location in the datacenter, whether vSphere HA, vSphere
DRS, or vSAN are going to be enabled.

The following sample will create a new cluster in the “Remote-
Datacenter” and enable HA, DRS, and vSAN.

New-Cluster -Name "vSAN" -Location "Remote-Datacenter" -HAEnabled -
DrsEnabled -VsanEnabled

The cluster is created, but none of these have been configured as of
yet.

Adding hosts to a vSAN cluster
Adding hosts to a vSphere cluster has long been a manual task,
accomplished serially, one host at a time in the vSphere UI.

New Hosts
The Cluster Quickstart Wizard has made this significantly easier,
allowing one or more hosts to be added in a single wizard.

Hosts can be manually added:

Hosts can be added to a cluster in PowerCLI in much the same way.

Adding a single host to vCenter and a vSAN Cluster:

Add-VMHost -Name “HostName” -Location $Cluster -user “root” -password
“password”

If the host has not previously been added to vCenter, use -Force to
accept the SSL Certificate to proceed

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 16

Add-VMHost “hostname” -Location $Cluster -user “root” -password
“password” -Force

Multiple hosts not part of vCenter could be added from an array:

$HostList = (“host1”,”host2”,”host3”,”host4”)

Foreach ($Item in $HostList) {
 Add-VMHost $Item -Location $Cluster -user “root” -password
“password” -Force
}

If it isn’t desired to put credentials in the script, they can be prompted
for, or possibly read from an external file that has permissions secured
for only authorized administrators:

$HostCreds = Get-VICredentialStoreItem -File “C:\Secure\Creds.xml”

$HostList = (“host1”,”host2”,”host3”,”host4”)

Foreach ($Item in $HostList) {
 Add-VMHost $Item -Location $Cluster -Credentials $HostCreds -Force
}

Existing Hosts
In the new Cluster Quickstart, hosts can also be added if they are
already present in vCenter:

This is a bit more difficult though, because Get-VMHost simply returns
all hosts attached to vCenter:

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 17

PS /> Get-VMHost

Name ConnectionState PowerState
---- --------------- ----------
sc6.scdemo.local Connected PoweredOn
sc3.scdemo.local Connected PoweredOn
sc5.scdemo.local Connected PoweredOn
sc2.scdemo.local Connected PoweredOn
sc1.scdemo.local Connected PoweredOn
sc4.scdemo.local Connected PoweredOn
witness1.scdemo.l... Connected PoweredOn

What if we only want to get a list of hosts that are in a specific
datacenter?

PS /> $Datacenter = Get-Datacenter -Name “Datacenter”
PS /> Get-VMHost -Location $Datacenter

Name ConnectionState PowerState
---- --------------- ----------
sc6.scdemo.local Connected PoweredOn
sc3.scdemo.local Connected PoweredOn
sc5.scdemo.local Connected PoweredOn
sc2.scdemo.local Connected PoweredOn
sc1.scdemo.local Connected PoweredOn
sc4.scdemo.local Connected PoweredOn

This still doesn’t differentiate between hosts that are in a cluster or not.
Looking at the full properties of Get-VMHost, the Parent value will
indicate whether the host is a member a cluster or not.

PS /> Get-VMHost -Location $Datacenter | Where-Object {$_.Parent.Name
-eq “host”}

Name ConnectionState PowerState
---- --------------- ----------
sc6.scdemo.local Connected PoweredOn
sc3.scdemo.local Connected PoweredOn
sc5.scdemo.local Connected PoweredOn
sc2.scdemo.local Connected PoweredOn
sc1.scdemo.local Connected PoweredOn
sc4.scdemo.local Connected PoweredOn

The VMHost Parent.Name value will be “host” for hosts that are not
part of a vSphere Cluster. Using that logic, it should be easy to add all
available hosts to the vSAN Cluster.

PS /> Get-VMHost -Location $Datacenter

Name ConnectionState PowerState
---- --------------- ----------
sc6.scdemo.local Connected PoweredOn
sc3.scdemo.local Connected PoweredOn
sc5.scdemo.local Connected PoweredOn

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 18

sc2.scdemo.local Connected PoweredOn
sc1.scdemo.local Connected PoweredOn
sc4.scdemo.local Connected PoweredOn

For hosts that are added to vCenter, but not part of a cluster, the Add-
VMHost cmdlet isn’t used. Instead, the Move-VMHost cmdlet is used to
move them into a cluster.

PS /> Move-VMHost -VMHost "sc1.scdemo.local" -Location $Cluster

Name ConnectionState PowerState
---- --------------- ----------
sc1.scdemo.local Connected PoweredOn

By combining the code to list all nodes not in a cluster with the Move-
VMHost cmdlet, it is easy to add each of these hosts.

PS /> Get-VMHost -Location $Datacenter| Where-Object {$_.Parent.Name -
eq "host"} | Move-VMHost -Location $Cluster

Name ConnectionState PowerState
---- --------------- ----------
sc1.scdemo.local Connected PoweredOn
sc6.scdemo.local Connected PoweredOn
sc3.scdemo.local Connected PoweredOn
sc5.scdemo.local Connected PoweredOn
sc2.scdemo.local Connected PoweredOn
sc4.scdemo.local Connected PoweredOn

Converting a Cluster to a Stretched Cluster
Another common vSAN Cluster task, is configuring the cluster as a
Stretched Cluster.

vSAN Stretched Clusters can have between 1 and 15 hosts per site
(typically different locations) and require a vSAN Witness Host in a
third location. Hosts in each site are assigned in to fault domain, with
one of those fault domains being designated as the Preferred site.

2 Node vSAN is architecturally the same as a Stretched Cluster
configuration with a single host in each fault domain, and both hosts
residing in the same physical location.

This section will only cover the mechanics of creating fault domains,
assigning hosts to those fault domains, and setting the cluster to a
stretched configuration. Networking requirements will be covered in
the Configuring vSAN Networking section.

The New-VsanFaultDomain cmdlet is used to create a fault domain.
Requirements of this cmdlet include the name of the new fault domain,
and the hosts that will reside in the fault domain.

PS /> New-VsanFaultDomain -Name "Preferred" -VMHost
"sc1.scdemo.local","sc2.scdemo.local”,"sc3.scdemo.local"

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 19

Name Cluster
---- -------
Preferred vSAN

PS /> New-VsanFaultDomain -Name "NonPreferred" -VMHost
"sc4.scdemo.local","sc5.scdemo.local","sc6.scdemo.local"

Name Cluster
---- -------
NonPreferred vSAN

Manually having to add each of hosts into the New-VsanFaultDomain
cmdlet can be a bit of time consuming. A good alternative to using the
actual ESXi host names, is to add those host names to an array and
running the New-VsanFaultDomain cmdlet.

PS /> $Primary = “sc1.scdemo.local”,”sc2.scdemo.local”,”sc3.scdemo.local”
PS /> New-VsanFaultDomain -Name "Primary" -VMHost $Primary

Going a bit further, it is possible to dynamically put hosts into arrays. It
is common for Stretched Cluster configurations to have a uniform
(even) number, so why not simply split the list of hosts down the
middle?

Put the hosts into an array, sorted by name
$ESXhosts = Get-Cluster -Name vSAN | Get-VMHost | Sort-Object Name

The middle of the array is the count divided by 2
An odd count will make the first array larger by 1
$ArrayMiddle = [int](($ESXhosts.Count)/2)

Put the first half of hosts in Primary & second half in Secondary
$Primary = $ESXhosts[0..(($ArrayMiddle)-1)]
$Secondary = $ESXhosts[$ArrayMiddle..(($ESXhosts.Count)-1)]

Create the fault domains & store the objects in variables to use later
$PrimaryFD = New-VsanFaultDomain -Name "Primary" -VMHost $Primary
$SecondaryFD = New-VsanFaultDomain -Name "Secondary" -VMHost $Secondary

Invoking the variable names, it can be seen that each has 3 hosts of the
6 host vSAN cluster.

PS /> $Primary

Name ConnectionState PowerState NumCpu Version
---- --------------- ---------- ------ -------
sc1.scdemo.local Connected PoweredOn 2 6.7.0
sc2.scdemo.local Connected PoweredOn 2 6.7.0
sc3.scdemo.local Connected PoweredOn 2 6.7.0

PS /> $Secondary

Name ConnectionState PowerState NumCpu Version
---- --------------- ---------- ------ -------
sc4.scdemo.local Connected PoweredOn 2 6.7.0
sc5.scdemo.local Connected PoweredOn 2 6.7.0
sc6.scdemo.local Connected PoweredOn 2 6.7.0

The Get-VsanFaultDomain cmdlet will list the fault domains:

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 20

PS /> Get-VsanFaultDomain

Name Cluster
---- -------
Primary vSAN
Secondary vSAN

With the fault domains configured, the next step is to change the
cluster’s configuration to Stretched. One of the fault domains will have
to be set as the Preferred, and a vSAN Witness Host will have to be
designated.

The process of designating the vSAN Witness Host simply requires the
Witness Host name, but it is important to know which devices will be
used for the Witness disk group cache and capacity devices.

For customers using the vSAN Witness Appliance with the Tiny or
Normal profile, the cache device typically has the device id of
mpx.vmhba1:C0:T2:L0 and the capacity device has the device id of
mpx.vmhba1:C0:T1:L0.

Assuming a vSAN Witness Host has been deployed, the Set-
VsanClusterConfiguration cmdlet is used to convert an existing cluster
to a stretched cluster.

PS /> $Cluster = Get-Cluster -Name “vSAN”
PS /> Set-VsanClusterConfiguration -Configuration $Cluster -StretchedClusterEnabled
$True -PreferredFaultDomain $PrimaryFD -WitnessHost witness1.scdemo.local -
WitnessHostCacheDisk mpx.vmhba1:C0:T2:L0 -WitnessHostCapacityDisk mpx.vmhba1:C0:T1:L0

Cluster VsanEnabled IsStretchedCluster Last HCL Updated
------- ----------- ------------------ ----------------
vSAN True True 1/23/19 11:45:00 AM

Configuring vSAN Networking
A VMkernel interface tagged for vSAN Traffic is required for vSAN
nodes to communicate with each other. This is true for vSAN nodes
that are presenting vSAN disk groups, or for vSAN nodes that are only
consuming vSAN storage.

The VMkernel interface used could be the default configured
Management VMkernel interface (vmk0) or a dedicated VMkernel
interface. It is a more common practice to isolate storage traffic to an
alternate VMkernel interface, so we will proceed with the assumption
and expectation that we’re using an alternate interface.

Tagging an existing VMkernel adapter
If an existing VMkernel adapter is already present, vSAN traffic only
needs to be tagged. The process is the same, whether the existing
VMkernel adapter is attached to a vSphere Standard Switch or vSphere
Distributed Switch.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 21

The Set-VMHostNetwork Adapter has vSAN Traffic as an argument and
allows for a simple “one-liner”:

PS /> Get-VMHostNetworkAdapter -Name "vmk1" -VMHost "sc1.scdemo.local" | Set-
VMHostNetworkAdapter -VsanTrafficEnabled $true
Perform operation?
Performing operation 'Configuring VM host network adapter.' on network adapter with IP
'192.168.110.31' and device name 'vmk1'.
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Yes"): A

Name Mac DhcpEnabled IP SubnetMask DeviceName
---- --- ----------- -- ---------- ----------
vmk1 00:50:56:67:4e:48 False 192.168.110.31 255.255.255.0 vmk1

To perform this without being prompted to confirm, simply append -
Confirm:$false to the end of the one-liner.

PS /> Get-VMHostNetworkAdapter -Name "vmk1" -VMHost "sc1.scdemo.local" | Set-
VMHostNetworkAdapter -VsanTrafficEnabled $true -Confirm:$false

Name Mac DhcpEnabled IP SubnetMask DeviceName
---- --- ----------- -- ---------- ----------
vmk1 00:50:56:67:4e:48 False 192.168.110.31 255.255.255.0 vmk1

It is also important to specify the host that this action is performed on.
Omitting the VMHost property will perform this across all hosts
connected to vCenter:

PS /> Get-VMHostNetworkAdapter -Name "vmk1" | Set-VMHostNetworkAdapter -
VsanTrafficEnabled $true
Perform operation?
Performing operation 'Configuring VM host network adapter.' on network adapter with IP
'192.168.110.31' and device name 'vmk1'.
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Yes"): A

Name Mac DhcpEnabled IP SubnetMask DeviceName

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 22

---- --- ----------- -- ---------- ----------
vmk1 00:50:56:67:4e:48 False 192.168.110.31 255.255.255.0 vmk1
vmk1 00:50:56:69:bc:87 False 192.168.110.32 255.255.255.0 vmk1
vmk1 00:50:56:82:d6:a2 False 192.168.137.201 255.255.255.0 vmk1
vmk1 00:50:56:82:b6:6c False 192.168.137.202 255.255.255.0 vmk1

This is likely not a desirable, as it could impact services on hosts that do
not require vSAN tagging on vmk1.

Creating a new VMkernel Adapter on a vSphere Standard Switch
What if a VMkernel adapter isn’t already configured on a host? The
vSphere Client provides a wizard to create a new VMkernel adapter,
configure the vSwitch that it is attached to, as well as services tagging,
IP addressing, and more.

This is relatively easy as well with PowerCLI. The New-
VMHostNetworkAdapter cmdlet will create the VMkernel adapter.

PS /> New-VMHostNetworkAdapter -VMHost “hostname” -PortGroup “vSAN” -VirtualSwitch
“vSwitch0” -IP 192.168.110.33 -SubnetMask 255.255.255.0 -Mtu 1500 -VsanTrafficEnabled
$true

Name Mac DhcpEnabled IP SubnetMask DeviceName
---- --- ----------- -- ---------- ----------
vmk1 00:50:56:67:76:f7 False 192.168.110.33 255.255.255.0 vmk1

The New-VMHostNetworkAdapter does not provide a mechanism to
set the VLAN to be used by the VMkernel interface. If a specific VLAN
is to be used by the newly created VMkernel interface, the Set-
VirtualPortGroup cmdlet will need to be used:

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 23

PS /> Get-VirtualPortGroup -VMHost “hostname" -Name "vSAN" | Set-VirtualPortGroup -
VLanId 100

Name Key VLanId PortBinding NumPorts
---- --- ------ ----------- --------
vSAN key-vim.host.PortGroup-vSAN 100

All default vSphere installations include a the vSwitch0 vSphere
Standard switch upon the initial installation.

Using a vSphere Distributed Switch for vSAN
vSAN licensing unlocks the vSphere Distributed Switch functionality for
vSphere environments that are not licensed with vSphere Enterprise
Plus licensing. In this situation, use of a vSphere Distributed Switch
would require the cluster to be licensed for vSAN and a vSAN
datastore configured.

Using a vSphere Distributed Switch vSAN not only provides additional
features, but also the ability to manage network settings for different
port groups uniformly across all hosts. This is especially helpful when
making consistent configuration changes for a vSAN cluster.

In the previous example, a vSphere Standard Switch was used. Every
vSphere host has a vSwitch configured by default.

vSphere Distributed Switches have to be created for each vSphere
Datacenter, and hosts must be attached to the VDS individually.

Only after the VDS has been created and hosts have been attached
(with some physical uplinks) can a VDS be used for a vSAN Cluster.

Creating a vSphere Distributed Switch
A VDS must be created in a vSphere Datacenter to be used by hosts in
that datacenter. In the vSphere Client this is done from the Networking
view for any given datacenter:

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 24

Different settings that may be set with the wizard include the name,
version, number of uplinks from each host, whether Network IO Control
is enabled or not, and whether or not to create a default port group.

If you aren’t familiar with Network IO Control (NIOC), it is a feature that
will let an administrator assign shares, reservations, and limits to
different traffic types. More specific details for NIOC in vSphere 6.7 can
be found here.

Creating a VDS is performed with the New-VDSwitch cmdlet.
Remember that a VDS is located in a Datacenter, so the Datacenter
must be specified when creating the VDS.

PS /> New-VDSwitch -Name "VDSwitch" -Location (Get-Datacenter -Name "DC")

Name NumPorts Mtu Version Vendor
---- -------- --- ------- ------
VDSwitch 0 1500 6.6.0 VMware, Inc.

To mimic the behavior of the Wizard, some additional parameters will
need to be set, like the number of uplinks and Maximum Transmission
Unit (MTU) size. NIOC requires some additional steps, which will be
covered shortly.

PS /> New-VDSwitch -Name "VDSwitch" -Location (Get-Datacenter -Name "DC") -Mtu 9000 -
NumUplinkPorts 4 -Version “6.5.0”

Name NumPorts Mtu Version Vendor
---- -------- --- ------- ------
VDSwitch 0 9000 6.5.0 VMware, Inc.

Enabling NIOC isn’t directly exposed with PowerCLI, so the Get-View
cmdlet will be used to enable NIOC: To enable NIOC,

PS /> $VDSwitchView = Get-View -Id (Get-VDSwitch -Name “VDSwitch”)
PS /> $VDSwitchView.EnableNetworkResourceManagement($true)
PS />

There are some additional settings that can be added, and can be seen
by running Get-Help New-VDSwitch -Full.

After a VDS has been created, hosts must be added to the VDS.
Adding a host to the VDS is necessary.

PS /> Get-VDSwitch -VMHost "sc1.scdemo.local" | Where-Object {$_.Name -eq "VDSwitch"}
PS />
PS /> If (-NOT (Get-VDSwitch -VMHost "sc1.scdemo.local" | Where-Object {$_.Name -eq
"VDSwitch"})) { Get-VDSwitch -Name “VDSwitch” | Add-VDSwitchVMHost “sc1.scdemo.local”
}

Once a host has been added, one or more physical NICs from the host
must be added to the VDS.

PS /> Get-VDSwitch -VMHost "sc1.scdemo.local" | Where-Object {$_.Name -eq "VDSwitch"}
| Add-VDSwitchPhysicalNetworkAdapter -VMHostPhysicalNic (Get-VMHostNetworkAdapter -
Name "vmnic1" -VMHost "sc1.scdemo.local")

https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.networking.doc/GUID-ADEA0213-C969-43E4-B1F4-66D4A916EBDF.html

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 25

Confirm
Are you sure you want to perform this action?
Performing the operation "Adding physical network adapter(s) 'vmnic1'" on target
"VDSwitch".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Yes"): Y
PS />

To perform this without being prompted to confirm, simply append -
Confirm:$false to the end.

PS /> Get-VDSwitch -VMHost "sc1.scdemo.local" | Where-Object {$_.Name -eq "VDSwitch"}
| Add-VDSwitchPhysicalNetworkAdapter -VMHostPhysicalNic (Get-VMHostNetworkAdapter -
Name "vmnic1" -VMHost "sc1.scdemo.local") -Confirm:$false
PS />

Those are quite a few steps. Create a VDS, add each host to the VDS,
and uplink physical NICs from each of the hosts.

Here is an example of putting that all together for a new vSAN cluster
when a VDS does not already exist:

Get the Datacenter Object
$Datacenter = Get-Datacenter -Name "Datacenter"

Create the new VDS named VDSwitch
$VDSwitch = New-VDSwitch -Name "VDSwitch" -Location $Datacenter -Version "6.6.0" -Mtu
1500 -NumUplinkPorts 2

Use Get-View to set NIOC
$VDSwitchView = Get-View -Id $VDSwitch.Id
$VDSwitchView.EnableNetworkResourceManagement($true)

Get the vSAN Cluster
$Cluster = Get-Cluster -Name "vSAN"

Enumerate all the hosts and cycle through them
Foreach ($ESXhost in ($Cluster | Get-VMHost)) {

 # If the VDS doesn’t exist on the host, add it
 If (-Not (Get-VDSwitch -VMHost $ESXhost | Where-Object {$_.Name -eq "VDSwitch1"})) {
 # Add the host to the VDS
 $VDSwitch | Add-VDSwitchVMHost -VMHost $ESXhost
 # Add pnics 2 & 3 to the VDS
 $VDSwitch | Add-VDSwitchPhysicalNetworkAdapter -VMHostPhysicalNic (Get-
VMHostNetworkAdapter -Name "vmnic2" -VMHost $ESXhost) -Confirm:$false
 $VDSwitch | Add-VDSwitchPhysicalNetworkAdapter -VMHostPhysicalNic (Get-
VMHostNetworkAdapter -Name "vmnic3" -VMHost $ESXhost) -Confirm:$false
 }
}

Name NumPorts Mtu Version Vendor
---- -------- --- ------- ------
VDSwitch1 0 1500 6.6.0 VMware, Inc.

The physical NIC selection could get more specific than simple vmnicX
names by searching for additional properties of the NICs.

Below is sample code to query the physical NICs that have a speed
greater than 1GB, and then loop through them to add them to the VDS.

Grab the pNICs with >1Gbps, we'll expect any NICs with >1Gbps to be direct connected

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 26

$pNICs = $ESXHost | Get-VMHostNetworkAdapter | Where-Object {$_.BitRatePerSec -gt
"1000"}

ForEach ($pNIC in $pNICs) {
 $VDSwitch | Add-VDSwitchPhysicalNetworkAdapter -VMHostPhysicalNic $pNIC -
Confirm:$false
}

Once a host or hosts are added to the VDS, a VMkernel interface for
vSAN can be created.

Creating a VDS Portgroup and VMkernel Adapter for vSAN on a VDS
The cmdlet used to create a VMkernel interface on a vSphere
Distributed Switch is a little different than the one used for a vSphere
Standard Switch.

A portgroup must exist on the vSphere Distributed Switch, the vSAN
Host must be attached to the vSphere Distributed Switch, and only
then can a VMkernel interface be created for vSAN.

The New-VDPortGroup cmdlet will create the VDS portgroup.

PS /> New-VDPortGroup -Name “vSAN” -VDSwitch “VDSwitch” -Numports 8 -VlanID 100

Name Key VLanId PortBinding NumPorts
---- --- ------ ----------- --------
vSAN key-vim.host.PortGroup-vSAN 100

The VDS portgroup only needs to be created once for the vSAN
cluster, as it is attached to the entire VDS.

With the vSAN portgroup has been created, and one or more hosts
have been added to the VDS, each with one or more physical adapters
attached to the VDS, a new VMkernel interface can be created for use
by vSAN using New-VMHostNetworkAdapter.

PS /> New-VMHostNetworkAdapter -VMHost "sc1.scdemo.local" -PortGroup "vSAN" -
VirtualSwitch "VDSwitch" -IP 192.168.110.31 -SubnetMask 255.255.255.0 -Mtu 1500 -
VsanTrafficEnabled $true

Name Mac DhcpEnabled IP SubnetMask DeviceName
---- --- ----------- -- ---------- ----------
vmk1 00:50:56:63:0c:1c False 192.168.110.31 255.255.255.0 vmk1

PS />

Unless using DHCP, a specific IP address must be assigned to the
VMkernel interface. This can be quite cumbersome for configuring IP
addresses for any number of nodes, large or small.

A fairly common practice for virtualization administrators, is to use
matching 4th octet addresses for different interfaces on a vSphere host.

A good example of this would be something like Host 1’s configuration
below:

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 27

• vmk0 – Management – 10.192.102.237
• vmk1 – vSAN – 192.168.101.237
• vmk2 – vMotion – 192.168.102.237
•

The ability to programmatically use the same 4th octet from the
Management VMkernel interface is easy with the Split operation.

Before we can split though, we need to retrieve the IP address of vmk0
above. Get-VMHostNetwork will help with that.

PS /> $ESXhost | Get-VMHostNetwork

HostName DomainName DnsFro ConsoleGateway ConsoleGatewayD DnsAddress
 mDhcp evice
-------- ---------- ------ -------------- --------------- ----------
sc2-rdops... eng.vmwar... True {10.195.12.31, 10...

Unfortunately, we need a little more information. Selecting only the
VMkernelGateway, and expanding it to the virtual NIC will give us what
is necessary.

PS /> $ESXhost | Get-VMHostNetwork | Select-Object HostName, VMKernelGateway -
ExpandProperty VirtualNic

Name Mac DhcpEnabled IP SubnetMask DeviceName
---- --- ----------- -- ---------- ----------
vmk0 02:00:2e:04:fb:b0 True 10.192.120.68 255.255.224.0 vmk0

In the example above, the IP is 10.192.120.68. If we put the results in a
variable, the IP can be easily retrieved.

PS /> $vmk0 = $ESXhost | Get-VMHostNetwork | Select-Object HostName, VMKernelGateway -
ExpandProperty VirtualNic
PS /> $vmk0.IP
10.192.120.68

Now that the IP address of vmk0 is available as $vmk0.IP, it can be split
to determine the last octet value.

PS /> $LastOctet = $vmk0.IP.Split('.')[-1]

With the ability to enumerate all the hosts in a vSAN cluster and
retrieve the last octet of vmk0, it is easy to add a VDS VMkernel
Interface for vSAN use across the entire cluster.

Get the VDS Object
$VDSwitch = Get-VDSwitch -Name "VDSwitch"

Get the Port Group Object
$VDPortGroup = Get-VirtualPortGroup -Name "vSAN"

Get the Cluster object
$Cluster = Get-Cluster -Name "vSAN1"

Set the value for the 1st 3 octets of the vSAN Network
$VsanPrefix = "192.168.101."

Enumerate each of the hosts, retrieve the IP of vmk0, and use the last octet to

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 28

create a vSAN VMkernel interface
Foreach ($ESXhost in ($Cluster | Get-VMHost)) {
 # Get the IP of vmk0
 $vmk0 = $ESXhost | Get-VMHostNetwork | Select-Object HostName, VMKernelGateway -
ExpandProperty VirtualNic

 # Get the last octet of vmk0
 $LastOctet = $vmk0.IP.Split('.')[-1]

 # set the full IP of the vSAN interface for the current host
 $VsanIP = $VsanPrefix+$LastOctet

 # Create the VMkernel interface
 New-VMHostNetworkAdapter -VirtualSwitch $VDSwitch -VMHost $ESXhost -PortGroup
$VDPortGroup -IP $VsanIP -SubnetMask "255.255.255.0" -VsanTrafficEnabled $true
}

The resulting output is:
192.168.101.57

Name Mac DhcpEnabled IP SubnetMask DeviceName
---- --- ----------- -- ---------- ----------
vmk1 00:50:56:67:e1:82 False 192.168.101.57 255.255.255.0 vmk1
192.168.101.215
vmk1 00:50:56:6e:a2:fe False 192.168.101.215 255.255.255.0 vmk1
192.168.101.23
vmk1 00:50:56:66:85:7d False 192.168.101.23 255.255.255.0 vmk1
192.168.101.46
vmk1 00:50:56:61:c5:04 False 192.168.101.46 255.255.255.0 vmk1
192.168.101.237
vmk1 00:50:56:63:d9:73 False 192.168.101.237 255.255.255.0 vmk1
192.168.101.68
vmk1 00:50:56:69:00:9c False 192.168.101.68 255.255.255.0 vmk1

The same could be done for creating a vMotion VMkernel interface.
The only code difference would be to use -VMotionEnabled instead of -
VsanTrafficEnabled.

Upgrading a vSphere Distributed Switch and enabling NIOC
It has been stated a few times that vSAN is part of vSphere. Updating
vSphere hosts will also update vSAN builds. Something that often goes
overlooked, is upgrading the vSphere Distributed Switch version.

Consider the scenario where a customer installs vSphere 6.0 and vSAN
6.2 (the most recent release of vSAN that is part of vSphere). When the
customer upgrades to vSphere 6.5 or 6.7, it is entirely possible to not
upgrade the vSphere Distributed Switch.

An administrator would need to know to go into the vSphere Client,
right click on the VDS and select Upgrade.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 29

Upgrading the VDS is missed quite often. While this is easily
accomplished in the UI individually, it is more problematic at scale.

Let’s start with upgrading a single VDS to the latest version. There is no
native PowerCLI cmdlet to upgrade a VDS, so Get-View will have to be
used.

Get the VDSwitch
$VDSwitch = Get-VDSwitch -Name "DSwitch0"

Create a VDS Product Specification
$DVSProdSpec = New-Object VMware.Vim.DistributedVirtualSwitchProductSpec
$DVSProdSpec.ForwardingClass = 'cswitch'
$DVSProdSpec.Vendor = 'VMware, Inc.'
$DVSProdSpec.Name = 'DVS'
$DVSProdSpec.Version = '6.6.0'

Apply the DVS Prod Spec with an Upgrade Operation
$VDSwitchView.PerformDvsProductSpecOperation_Task('upgrade',$DVSProdSpec)

Enabling NIOC is also not natively available in PowerCLI, so Get-View
will have to be used to enable it as well:

Get the VDSwitch
$VDSwitch = Get-VDSwitch -Name "DSwitch0"

Enable NIOC
$VDSwitchView = Get-View -ID $VDSwitch.Id

Change NIOC to enabled
$VDSwitchView.EnableNetworkResourceManagement($true)

These could be easily combined:

Get the VDSwitch
$VDSwitch = Get-VDSwitch -Name "DSwitch0"

Create a VDS Product Specification
$DVSProdSpec = New-Object VMware.Vim.DistributedVirtualSwitchProductSpec
$DVSProdSpec.ForwardingClass = 'cswitch'
$DVSProdSpec.Vendor = 'VMware, Inc.'
$DVSProdSpec.Name = 'DVS'
$DVSProdSpec.Version = '6.6.0'

Apply the DVS Prod Spec with an Upgrade Operation
$VDSwitchView.PerformDvsProductSpecOperation_Task('upgrade',$DVSProdSpec)

Enable NIOC

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 30

$VDSwitchView = Get-View -ID $VDSwitch.Id

Change NIOC to enabled
$VDSwitchView.EnableNetworkResourceManagement($true)

With NIOC enabled, different traffic types like vSAN, vMotion,
Management, VM, or other could be adjusted as well.

Looking at System Traffic in a VDS’s configuration will show the
different traffic types:

These can be enumerated using from the VDS Object:

PS /> $VDSwitch = Get-VDSwitch “VDSwitch”

PS /> $VDS.ExtensionData.Config.InfrastructureTrafficResourceConfig | Select-Object
Key,Description

Key Description
--- -----------
management Management Traffic Type
faultTolerance Fault Tolerance (FT) Traffic Type
vmotion vMotion Traffic Type
virtualMachine Virtual Machine Traffic Type
iSCSI iSCSI Traffic Type
nfs NFS Traffic Type
hbr vSphere Replication (VR) Traffic Type
vsan vSAN Traffic Type
vdp vSphere Data Protection Backup Traffic Type

The Infrastructure Traffic Resource Configuration, part of the VDS
Config contains each of these.

To adjust the shares, share value, reservation, or limit of each of these
traffic types, a VDS Reconfiguration Task must be accomplished.

To reconfigure a VDS, a DVSConfigSpec must be created. Each of the
traffic types are an Infrastructure Traffic Resource, which must be
created also. The Infrastructure Traffic Recourse is applied to the
DVSConfigSpec, which is then used to reconfigure the VDS.

Get the VDS object
$VDS = Get-VDSwitch -Name VDSwitch
Setup some new objects to apply our settings to (reused for each)
$InfraTrafficResConfig = New-Object VMware.Vim.DvsHostInfrastructureTrafficResource

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 31

$InfraTrafficAllocationShares = New-Object VMware.Vim.SharesInfo
$InfraTrafficAllocationShares.Level = 'custom'
$InfraTrafficAllocation = New-Object
VMware.Vim.DvsHostInfrastructureTrafficResourceAllocation
$InfraTrafficAllocation.Limit = '-1'
$ResConfig = New-Object VMware.Vim.DVSConfigSpec

enumerate the traffic types that are important to us
Foreach ($TrafficType in $VDS.ExtensionData.Config.InfrastructureTrafficResourceConfig)
{
 Switch ($TrafficType.Key) {
 # Check the vSAN Configuration for a share value of 100 & adjust if it is not 100
 "vsan" {
 If ($TrafficType.AllocationInfo.Shares.Shares -ne '100') {
 $Shares = '100'
 $InfraTrafficResConfig.Key = $TrafficType.Key
 $InfraTrafficAllocationShares.Shares = $Shares
 $InfraTrafficAllocation.Shares = $InfraTrafficAllocationShares
 $InfraTrafficAllocation.Shares = $InfraTrafficAllocationShares
 $InfraTrafficResConfig.AllocationInfo = $InfraTrafficAllocation
 $ResConfig.InfrastructureTrafficResourceConfig = $InfraTrafficResConfig
 $ResConfig.ConfigVersion=(Get-VDSwitch -Name $VDS).ExtensionData.Config.ConfigVersion
 # Apply the changes
 $VDS.ExtensionData.ReconfigureDvs($ResConfig)
 }
 }
 "vmotion" {
 # Check the vMotion Configuration for a share value of 50 & adjust if it is not 50
 If ($TrafficType.AllocationInfo.Shares.Shares -ne '50') {
 $Shares = '50'
 $InfraTrafficResConfig.Key = $TrafficType.Key
 $InfraTrafficAllocationShares.Shares = $Shares
 $InfraTrafficAllocation.Shares = $InfraTrafficAllocationShares
 $InfraTrafficAllocation.Shares = $InfraTrafficAllocationShares
 $InfraTrafficResConfig.AllocationInfo = $InfraTrafficAllocation
 $ResConfig.InfrastructureTrafficResourceConfig = $InfraTrafficResConfig
 $ResConfig.ConfigVersion=(Get-VDSwitch -Name $VDS).ExtensionData.Config.ConfigVersion
 # Apply the changes
 $VDS.ExtensionData.ReconfigureDvs($ResConfig)
 }
}
 # Check the VM Network Configuration for a share value of 30 & adjust if it is not 30
 "virtualmachine" {
 If ($TrafficType.AllocationInfo.Shares.Shares -ne '30') {
 $Shares = '30'
 $InfraTrafficResConfig.Key = $TrafficType.Key
 $InfraTrafficAllocationShares.Shares = $Shares
 $InfraTrafficAllocation.Shares = $InfraTrafficAllocationShares
 $InfraTrafficResConfig.AllocationInfo = $InfraTrafficAllocation
 $ResConfig.InfrastructureTrafficResourceConfig = $InfraTrafficResConfig
 $ResConfig.ConfigVersion=(Get-VDSwitch -Name $VDS).ExtensionData.Config.ConfigVersion
 # Apply the changes
 $VDS.ExtensionData.ReconfigureDvs($ResConfig)
 }
}
"management" {
 # Check the Management Configuration for a share value of 20 & adjust if it is not 20
 If ($TrafficType.AllocationInfo.Shares.Shares -ne '19') {
 $Shares = '19'
 $InfraTrafficResConfig.Key = $TrafficType.Key
 $InfraTrafficAllocationShares.Shares = $Shares
 $InfraTrafficAllocation.Shares = $InfraTrafficAllocationShares
 $InfraTrafficAllocation.Shares = $InfraTrafficAllocationShares
 $InfraTrafficResConfig.AllocationInfo = $InfraTrafficAllocation
 $ResConfig.InfrastructureTrafficResourceConfig = $InfraTrafficResConfig
 $ResConfig.ConfigVersion=(Get-VDSwitch -Name $VDS).ExtensionData.Config.ConfigVersion
 # Apply the changes
 $VDS.ExtensionData.ReconfigureDvs($ResConfig)
 }
}
}}

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 32

Setting Static Routes for Layer 3 vSAN Routing
In vSAN configurations that use Layer 3 networking, static routing is
typically required. This is because vSAN uses the Default TCP/IP stack,
the same as the Management VMkernel interface, and alternate
gateways are not supported for interfaces that use the Default TCP/IP
stack. This is not unique to vSAN and is address in more depth in KB
article 2010877.

Because vSAN does not have its own TCP/IP stack, when Layer 3
addressing is used, static routes must be created on each ESXi host.

Stretched Cluster configurations are the most obvious deployments
that have a requirement for Layer 3 routing. This is because hosts in
the Preferred and Secondary sites must communicate with the vSAN
Witness Host over Layer 3. vSAN also supports traditional
configurations with Layer 3 networking, but they are less common.

Setting a static route on a vSphere host is typically set from the
command line but can also be accomplished from PowerCLI.

PS /> New-VMHostRoute "sc1.scdemo.local" -Destination 192.168.109.0 -Gateway
192.168.110.0 -PrefixLength 24 -Confirm:$False

Destination Gateway
----------- -------
192.168.109.0/24 192.168.110.0

The above command will set a static route on a single node. Stretched
Clusters typically have several nodes per site. These sites typically have
different routing requirements because Stretched Clusters are required
to communicate with the vSAN Witness Host over different uplinks to
the location where the vSAN Witness Host is.

It would be more efficient to configure the static routes for all hosts in
each site from PowerCLI. The easiest way to do this, is query the
cluster for the different Preferred and Non-Preferred Fault Domains,
and apply routing accordingly:

PS /> $PreferredFD = (Get-VsanClusterConfiguration -Cluster
"vSAN").PreferredFaultDomain
PS /> $NonPreferredFD = Get-Cluster | Get-VsanFaultDomain | Where-Object {$_.Name -ne
$PreferredFD}
PS /> $PreferredFD | Get-VMHost | New-VMHostRoute -Destination 192.168.109.0 -Gateway
192.168.110.0 -PrefixLength 24 -Confirm:$false
Destination Gateway
----------- -------
192.168.109.0/24 192.168.110.0
192.168.109.0/24 192.168.110.0
192.168.109.0/24 192.168.110.0

PS /> $NonPreferredFD | Get-VMHost | New-VMHostRoute -Destination 192.168.109.0 -
Gateway 192.168.110.253 -PrefixLength 24 -Confirm:$false

Destination Gateway
----------- -------
192.168.109.0/24 192.168.110.253
192.168.109.0/24 192.168.110.253
192.168.109.0/24 192.168.110.253

https://kb.vmware.com/kb/2010877

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 33

Setting a $PreferredFD variable to the Preferred Fault Domain and the
$NonPreferredFD variable to the alternate, allows a single New-
VMHostRoute command to each groups of hosts.

Tagging a vSAN Interface for vSAN Witness Traffic
For 2 Node configurations, vSAN 6.5 introduced the ability to use an
alternate interface for traffic destined to communicate with a vSAN
Witness Host.

The Witness Traffic Separation (WTS) feature enables the ability to
directly connect 2 Nodes for vSAN data communication while
communicating with the vSAN Witness Host on an alternate interface.

Upon release, support was backported to vSAN 6.2 (vSphere 6.0 U3 or
higher) as well. Full Stretched Cluster support for WTS.

Traffic is tagged as “witness” for the alternate interface to
communicate with the vSAN Witness Host. The Configuration Assist
Wizard introduced the ability to manage this through the UI, but with
the limitation that the VMkernel interface could only be backed by a
vSphere Distributed Switch. Customers have largely configured
“witness” traffic from the ESXi host command line.

PowerCLI can accomplish this easily with a simple one-liner:

PS /> Get-VMHost -Name “sc1.scdemo.local” | Get-EsxCli -v2 | % {
$_.vsan.network.ip.add.Invoke(@{traffictype='witness';interfacename='vmk0'})}
PS />

In the example, vmk0 has “witness” traffic added to vmk0. Tagging
“witness” traffic for all nodes in a cluster is just as easy:

PS /> Get-Cluster -Name “vSAN” | Get-VMHost | Get-EsxCli -v2 | % {
$_.vsan.network.ip.add.Invoke(@{traffictype='witness';interfacename='vmk0'})}
PS />

Claiming Disks on vSAN Hosts
Early releases of vSAN provided the ability to automatically claim disks
for use by a vSAN host based on their eligibility. Disks could not have
existing partitions and had to be presented locally to the host.

There had to be at least one flash device and one or more spinning
drives in vSAN 5.5. It was easy to determine which drives were used for
which requirement of cache or capacity. This was because vSAN only
supported a Hybrid configuration in vSAN 5.5.

With the introduction of All-Flash support in vSAN 6.0, the auto-claim
process became a bit more difficult due to all the vSAN devices being
flash devices. In vSAN 6.6, the auto-claim setting was deprecated.

Despite devices no longer being automatically claimed, the vSAN
Cluster Wizard will still attempt to categorize disks for either the cache
or capacity use.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 34

PowerCLI can also be used to determine which disks are eligible for
vSAN, which disks are flash devices, as well as the size of the devices.

Listing the devices that are eligible for use with vSAN:

Get-VMHost -Name $VMHost | Get-VMHostHba | Get-ScsiLun | Where-Object
{$_.VsanStatus -eq “Eligible”}

The output seen will look something like this for a single host in the
same cluster as above:

CanonicalN ConsoleDeviceName LunType CapacityGB
ame
---------- ----------------- ------- ----------
naa.600... /vmfs/devices/disks/naa.600... disk 50.000
naa.600... /vmfs/devices/disks/naa.600... disk 200.000

Using “| format-list” (read ‘pipe format-list’), additional properties of
each device can be seen as well. Format-List can be abbreviated as “fl”.
Below is an abbreviated representation of the additional properties:

PS /> Get-VMHost -Name "sc1.scdemo.local" | Get-VMHostHba | Get-ScsiLun | Where-
Object {$_.VsanStatus -eq "Eligible"} |format-list

Id : HostSystem-host-13/naa.6000c291952813a5f8ff33afa05d16d0
CanonicalName : naa.6000c291952813a5f8ff33afa05d16d0
RuntimeName : vmhba0:C0:T1:L0
ConsoleDeviceName : /vmfs/devices/disks/naa.6000c291952813a5f8ff33afa05d16d0
CapacityMB : 51200
CapacityGB : 50
HostId : HostSystem-host-13
VMHostId : HostSystem-host-13
VMHost : sc1.scdemo.local
IsLocal : True
IsSsd : True
VsanStatus : Eligible
ExtensionData : VMware.Vim.HostScsiDisk

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 35

Id : HostSystem-host-13/naa.6000c2917d44723a60768b58ba3b43f6
CanonicalName : naa.6000c2917d44723a60768b58ba3b43f6
RuntimeName : vmhba0:C0:T2:L0
ConsoleDeviceName : /vmfs/devices/disks/naa.6000c2917d44723a60768b58ba3b43f6
CapacityMB : 204800
CapacityGB : 200
HostId : HostSystem-host-13
VMHostId : HostSystem-host-13
VMHost : sc1.scdemo.local
IsLocal : True
IsSsd : True
VsanStatus : Eligible
ExtensionData : VMware.Vim.HostScsiDisk

Properties such as “IsSsd” and “CapacityGB” can be used to determine
whether a device is a flash device or magnetic device, and if it is above
a predetermined capacity. Typically cache devices are smaller than
capacity devices.

An array variable can be created and looped through to determine the
number of flash devices or magnetic devices, as well as add each to
separate arrays for cache devices and capacity devices. Using these
different arrays will make it easy to add disk groups to a vSAN node.

$VsanHostDisks = Get-VMHost -Name $VMHost | Get-VMHostHba | Get-
ScsiLun | Where-Object {$_.VsanStatus -eq “Eligible”}

Also, remember that a vSAN Disk Group requires at least 2 devices, 1
cache and 1 capacity, so there is no need to proceed if there are less
than 2 devices.

Here is an example of that:

• Places SSD’s (up to 800GB) in a Cache array

• Places SSD’s larger than 800GB or Non-SSD’s into a Capacity array

If ($VsanHostDisks.Count -gt 1) {
 $CacheDisks = @()
 $CapacityDisks = @()
 Foreach ($VsanDisk in $VsanHostDisks) {
 If ($VsanDisk.IsSsd -eq $true -and $VsanDisk.CapacityGB -lt
“801”) {
 $CacheDisks +=$VsanDisk
 } else {
 $CapacityDisks +=$VsanDisk
 }}}

It is also important to understand:

• vSAN disk groups contain 1 cache device

• vSAN disk groups may not contain more than 7 capacity devices

• VMware recommends a balanced disk group configuration

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 36

The number of cache devices returned will determine how many disk
groups are created. It may or may not be possible to create balanced
disk groups, depending on whether the overall number of capacity
devices.

The switch function allows different instructions to be executed based
on the value of a variable. Based on the count of cache disks, the disk
group size could be balanced.

Switch ($CacheDisks.Count) {
 “1” { $MaxGroup = 7 }

 “2” {
 $MaxGroup = [math]::floor($CapacityDisks.Count/$CacheDisks.Count)}

 “3” {
 $MaxGroup = [math]::floor($CapacityDisks.Count/$CacheDisks.Count)}

 “4” {
 $MaxGroup = [math]::floor($CapacityDisks.Count/$CacheDisks.Count)}

 “5” {
 $MaxGroup = [math]::floor($CapacityDisks.Count/$CacheDisks.Count)}

If the number of capacity drives divided by the cache drive count does
not result in a whole number some drives would not be consumed
using this code.

The above code isn’t particularly efficient, and could be condensed:

Switch ($CacheDisks.Count) {
 “1” { $MaxGroup = 7
 }

 {($_ -gt 1) -and ($_ -lt 6)}
 {
 $MaxGroup = [math]::floor($CapacityDisks.Count/$CacheDisks.Count)
 }

Also, if the result is not a whole number, some drives would not be
consumed.

Putting capacity disks into a grouped object will help when creating the
disk groups.

$counter = [pscustomobject] @{Value =0}

$DiskGroups = $CapacityDisks | Group-Object -Property {
[math]::Floor($counter.Value++/$MaxGroup)}

The $DiskGroups array takes the $CapacityDisks array and groups
each $DiskGroup(x) entry by the $MaxGroup size.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 37

Setting the counter up as a custom PowerShell object allows the
$DiskGroup array items to be incremented automatically as the disks
are returned to the array.

The resulting output for a host with 5 cache devices and 10 capacity
devices, looks something like this:

PS /> $DiskGroups

Count Name Group
----- ---- -----
 2 0 {naa.25aaf2020bdf3adfd6da06, naa.883ed1c01e644b8cedd5ab}
 2 1 {naa.2b62e4410bf13ac63865f1, naa.b86b90c1ff3afaa39db642}
 2 2 {naa.573477873e4e9d70ab9467, naa.fae008df33e152e43d0c15}
 2 3 {naa.b9f58475c012b6d5c9f40a, naa.b67cc050ce199c52e31bf5}
 2 4 {naa.64e00356e3fe0a5d508830, naa.22bcd9e7cdd02c321a9be1}

Creating a balanced disk group configuration for this host is as easy as
enumerating each of the cache disks with one of the $DiskGroups
entries.

$i=0
Foreach ($CacheDisk in $CacheDisks) {

 New-VsanDiskGroup -VMHost $VMHost -SsdCanonicalName $CacheDisk -
DataDiskCanonicalName $DiskGroups[$i].Group
 $i = $i+1
 Write-Host "Adding Disk Group"$i
}

The variable $i is set to 0 to and incremented after the disk group is
created. This ensures that the $DiskGroup[$i] entry increments and the
next set of capacity devices are added to the next disk group.

This resulting code looks something like this:

$VsanHostDisks = Get-VMHost -Name HOSTNAME | Get-VMHostHba | Get-ScsiLun |
Where-Object {$_.VsanStatus -eq "Eligible"}

If ($VsanHostDisks.Count -gt 1) {
 $CacheDisks = @()
 $CapacityDisks = @()

 Foreach ($VsanDisk in $VsanHostDisks) {
 If ($VsanDisk.IsSsd -eq $true -and $VsanDisk.CapacityGB -lt "51") {
 $CacheDisks +=$VsanDisk
 } else {
 $CapacityDisks +=$VsanDisk
 }
 }
}

$counter = [pscustomobject] @{ Value = 0 }

Switch ($CacheDisks.Count) {
 "1" {
 Write-Host "Creating 1 Disk Group because there is only 1 cache
device "

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 38

 $MaxGroup = 7
 }
 {($_ -gt 1) -and ($_ -lt 6)} {
 Write-Host "Creating 2 Disk Groups"
 $MaxGroup = [math]::floor($CapacityDisks.Count / $CacheDisks.Count)
 }
}

$DiskGroups = $CapacityDisks | Group-Object -Property {
[math]::Floor($counter.Value++ / $groupSize) }

$i=0
Foreach ($CacheDisk in $CacheDisks) {
 New-VsanDiskGroup -VMHost $VMHost -SsdCanonicalName $CacheDisk -
DataDiskCanonicalName $DiskGroups[$i].Group
 $i = $i+1
 Write-Host "Adding Disk Group"$i
}

This would have to be run for every host in the vSAN cluster. It would
be easier to put this into a PowerShell function that could be called for
each node in the cluster.

An example function for creating disk groups:

Function Add-VsanHostDiskGroup {

 # Set our Parameters
 [CmdletBinding()]Param(
 [Parameter(Mandatory=$True)][string]$VMHost,
 [Parameter(Mandatory = $true)][Int]$CacheMax
)

 # Get all of the local disks that are eligible for vSAN use
 $VsanHostDisks = Get-VMHost -Name $VMHost | Get-VMHostHba | Get-ScsiLun |
Where-Object {$_.VsanStatus -eq "Eligible"}

 # There must be at least 2 disks
 # Need to add a check to make sure at least 1 flash and 1 capacity
 If ($VsanHostDisks.Count -gt 1) {
 $CacheDisks = @()
 $CapacityDisks = @()

 # Enumerate through each of the disks.
 Foreach ($VsanDisk in $VsanHostDisks) {
 # Device is tagged as SSD and less than the max size? It is a cache
device
 If ($VsanDisk.IsSsd -eq $true -and $VsanDisk.CapacityGB -lt
$CacheMax) {
 $CacheDisks +=$VsanDisk
 } else {
 $CapacityDisks +=$VsanDisk
 }
 }
 }

 $counter = [pscustomobject] @{ Value = 0 }

Switch ($CacheDisks.Count) {
 "1" {

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 39

 Write-Host "Creating 1 Disk Group because there is only 1 cache device"
 $MaxGroup = 7
 }

 {($_ -gt 1) -and ($_ -lt 6)} {
 Write-Host "Creating 2 Disk Groups"
 $groupSize = [math]::floor($CapacityDisks.Count / $CacheDisks.Count)
 }
 }
 $DiskGroups = $CapacityDisks | Group-Object -Property {
[math]::Floor($counter.Value++ / $groupSize) }

 $i=0
 Foreach ($CacheDisk in $CacheDisks) {

 # Create a new Disk Group
 New-VsanDiskGroup -VMHost $VMHost -SsdCanonicalName $CacheDisk -
DataDiskCanonicalName $DiskGroups[$i].Group

 $i = $i+1
 Write-Host "Adding Disk Group"$i
 }
}

This function could then be easily executed for each host in a cluster.

$Cluster = Get-Cluster -Name “ClusterName”

If ($Cluster.VsanEnabled) {

 Foreach ($ESXHost in ($Cluster | Get-VMHost)){
 Add-VsanHostDiskGroup -VMHost $ESXHost -CacheMax 400
 }
}

• Check to see if vSAN is enabled on the cluster.
• Use a Foreach to loop through all of the hosts in the cluster
• Execute the Add-VsanHostDiskGroup function for any eligible

devices on the current host.

Remember that there is no hardcoded value for the number of hosts in
the cluster, and no hardcoded value for the number of disks on each
host. This example will work for vSAN clusters of any size.

vSAN Performance Service
When creating a new vSAN cluster in vSAN 6.7 or higher using the
vSAN Cluster Wizard or vSphere Cluster Quickstart, the Performance
Service is automatically enabled.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 40

When using older versions of vSAN or are creating a cluster using the
vSAN Management API, the Performance Service is not enabled
automatically.

Enabling the Performance Service is relatively easy with PowerCLI
using the Get/Set-VsanClusterConfiguration cmdlets.

Ps /> Get-VsanClusterConfiguration -Cluster "vSAN" | Set-
VsanClusterConfiguration -PerformanceServiceEnabled $true

Cluster VsanEnabled IsStretchedCluster Last HCL Updated
------- ----------- ------------------ ----------------
vSAN True True 1/16/19 11:33:00 AM

This will enable the vSAN Performance Service with vSAN’s default
storage policy. If an alternate policy is desired, the -StoragePolicy
parameter may be used.

Ps /> Get-VsanClusterConfiguration -Cluster "vSAN" | Set-
VsanClusterConfiguration -PerformanceServiceEnabled $true -StoragePolicy
(Get-SpbmStoragePolicy -Name “Alternate Policy”)

Cluster VsanEnabled IsStretchedCluster Last HCL Updated
------- ----------- ------------------ ----------------
vSAN True True 1/16/19 11:33:00 AM

The storage policy could be put in a variable beforehand as well

Ps /> $Policy = Get-SpbmStoragePolicy -Name “Alternate Policy”
Ps /> Get-VsanClusterConfiguration -Cluster "vSAN" | Set-
VsanClusterConfiguration -PerformanceServiceEnabled $true -StoragePolicy
$Policy

Cluster VsanEnabled IsStretchedCluster Last HCL Updated
------- ----------- ------------------ ----------------
vSAN True True 1/16/19 11:33:00 AM

vSAN Build Recommendation Credentials
The vSAN Health Check introduced the ability to create a VMware
Update Manager Baseline for each vSAN Cluster. This functionality
requires credentials for my.vmware.com to be entered in the vSphere
Client to properly create the baseline.

https://my.vmware.com/

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 41

The process of entering credentials for a single vCenter is easy using
the UI, but this is a manual process.

Automated installations of vSAN clusters, or password changes for the
my.vmware.com account can be easily handled with PowerCLI.

This isn’t exposed natively in PowerCLI, but can be accomplished using
the Get-VsanView cmdlet and the VsanVumSystem-vsan-vum-system
managed object reference.

PS /> Get-VsanView -Id VsanVumSystem-vsan-vum-system

Client MoRef
------ -----
VMware.Vsan.Views.VsanClientImpl VsanVumSystem-vsan-vum-system

Setting the VsanView MoRef for VM to a variable makes it a bit more
useable:

PS /> $VsanVumMoref = Get-VsanView -Id VsanVumSystem-vsan-vum-system

The FetchIsoDepotCookie method is used to set the credentials for
my.vmware.com:

PS /> $VsanVumMoref.FetchIsoDepotCookie(“username@email.com”,”password”)

This simple script can update these credentials easily at any scale.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 42

Deduplication and Compression
Deduplication and Compression was introduced with the release of
vSAN 6.2. This service gives administrators the ability to enable the
deduplication and compression of data on All-Flash vSAN clusters with
Advanced or Enterprise licensing.

Enabling Deduplication and Compression
Deduplication and Compression is typically enabled in the vSphere
Client or vSphere Web Client in the vSAN Services UI. Deduplication
and Compression can be enabled upon cluster creation, or it may be
enabled on an existing cluster.

Deduplication and Compression settings for a vSAN cluster can be
configured using the Get/Set-VsanClusterConfiguration cmdlets.

Ps /> Get-VsanClusterConfiguration -Cluster "vSAN" | Select-Object Name,
VsanEnabled, SpaceEfficiencyEnabled

Name VsanEnabled SpaceEfficiencyEnabled
---- ----------- ----------------------
vSAN True False

To set SpaceEfficiencyEnabled the vSAN Cluster’s configuration must
be passed to the Set-VsanClusterConfiguration cmdlet.

Ps /> Get-VsanClusterConfiguration -Cluster "vSAN" | Set-
VsanClusterConfiguration -SpaceEfficiencyEnabled $true

Cluster VsanEnabled IsStretchedCluster Last HCL Updated
------- ----------- ------------------ ----------------
vSAN True True 1/16/19 11:33:00 AM

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 43

After the process of enabling SpaceEfficiency, Get-
VsanClusterConfiguration will report that it has been enabled.

Ps /> Get-VsanClusterConfiguration -Cluster "vSAN" | Select-Object Name,
VsanEnabled, SpaceEfficiencyEnabled

Name VsanEnabled SpaceEfficiencyEnabled
---- ----------- ----------------------
vSAN True True

In cases where the cluster is a 2 or 3 Node vSAN cluster, remember to
include the -AllowReducedRedundancy parameter.

Ps /> Get-VsanClusterConfiguration -Cluster "vSAN" | Set-
VsanClusterConfiguration -SpaceEfficiencyEnabled $true -
AllowReducedRedundancy $true

Cluster VsanEnabled IsStretchedCluster Last HCL Updated
------- ----------- ------------------ ----------------
vSAN True True 1/16/19 11:33:00 AM

Deduplication and Compression can also be set using Get-VsanView
and the VsanVcClusterConfigSystem Managed Object. While this isn’t
the easiest method, it is still good to be familiar with when combined
with vSAN Encryption.

This is because the process of enabling vSAN Encryption
simultaneously with Deduplication and Compression requires only a
single on-disk format change.

Get the Datacenter Object
$Datacenter = Get-Datacenter -Name "Datacenter"

Create a new Cluster
$Cluster = New-Cluster -Name “vSAN” -VsanEnabled -Location $Datacenter

Setup the VsanVcClusterConfigSystem variable
$VsanVcClusterConfig = Get-VsanView -Id "VsanVcClusterConfigSystem-vsan-cluster-config-
system"

The DataEfficiency setting must be put in a Specification
$VsanDataEfficiencyConfig = New-Object -TypeName
VMware.Vsan.Views.VsanDataEfficiencyConfig
Compression must be set
$VsanDataEfficiencyConfig.CompressionEnabled = $true
Deduplication must be set
$VsanDataEfficiencyConfig.DedupEnabled = $true

The vSAN Config must be set in a specification
$VsanConfig = New-Object -Type VMware.Vsan.Views.VimVsanReconfigSpec
Set Reduced Redundancy for 2 or 3 node configurations
$VsanConfig.AllowReducedRedundancy = $true
Set the Data Encryption Configuration
$VsanConfig.DataEfficiencyConfig = $VsanDataDfficiencyConfig
Execute a Cluster Reconfiguration
$VsanVcClusterConfig.VsanClusterReconfig($Cluster.ExtensionData.MoRef,$VsanConfig)

The process is the same for an existing cluster that will have encryption
enabled.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 44

Get the Cluster
$Cluster = Get-Cluster -Name “vSAN”

Setup the VsanVcClusterConfigSystem variable
$VsanVcClusterConfig = Get-VsanView -Id "VsanVcClusterConfigSystem-vsan-cluster-config-
system"

The DataEfficiency setting must be put in a Specification
$VsanDataEfficiencyConfig = New-Object -TypeName
VMware.Vsan.Views.VsanDataEfficiencyConfig
Compression must be set
$VsanDataEfficiencyConfig.CompressionEnabled = $true
Deduplication must be set
$VsanDataEfficiencyConfig.DedupEnabled = $true

The vSAN Config must be set in a specification
$VsanConfig = New-Object -Type VMware.Vsan.Views.VimVsanReconfigSpec
Set Reduced Redundancy for 2 or 3 node configurations
$VsanConfig.AllowReducedRedundancy = $true
Set the Data Encryption Configuration
$VsanConfig.DataEfficiencyConfig = $VsanDataDfficiencyConfig
Execute a Cluster Reconfiguration
$VsanVcClusterConfig.VsanClusterReconfig($Cluster.ExtensionData.MoRef,$VsanConfig)

Closely looking at the code, it can be seen that Compression and
Deduplication are separate data efficiency settings. At this time,
enabling one, but not the other is not supported by VMware.

vSAN Encryption
Data at Rest Encryption was introduced for vSAN with the release of
version 6.6. This service gives administrators the ability to encrypt all
data on a vSAN cluster on both Hybrid and All-Flash Architectures.

Enabling vSAN Encryption
vSAN Encryption is typically enabled in the vSphere Client or vSphere
Web Client in the vSAN Services UI. Encryption can be enabled upon
cluster creation, or it may be enabled on an existing cluster.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 45

Enabling or disabling Encryption on a vSAN Cluster can be performed
using the Start-VsanEncryptionConfiguration cmdlet. This cmdlet is
used to enable or disable vSAN Encryption.

Parameters that are used when enabling or disabling encryption with
the Start-VsanEncryptionConfiguration cmdlet include the Cluster
object, the KMS Server object, the encryption state (enabled/disabled),
whether to erase disks before use, and whether or not to allow for
reduced redundancy.

Here is an example set of commands used to enable vSAN Encryption:

PS /> $KmsCluster = Get-KmsCluster -Name "KMS"
PS /> $KmsCluster = Get-KmsCluster -Name "KMS"
PS /> Start-VsanEncryptionConfiguration -Cluster $Cluster -EncryptionEnabled $true -
EraseDisksBeforeUse $false -AllowReducedRedundancy $true -KmsCluster $KmsCluster -
Confirm:$false

Name State % Complete Start Time Finish Time
---- ----- ---------- ---------- -----------
Reconfigure vSAN cluster Running 0 09:04:21 AM

Disabling vSAN Encryption would be similarly disabled:

PS /> Start-VsanEncryptionConfiguration -Cluster $Cluster -EncryptionEnabled $false -
AllowReducedRedundancy $true -Confirm:$false

Name State % Complete Start Time Finish Time
---- ----- ---------- ---------- -----------
Reconfigure vSAN cluster Running 0 09:23:54 AM

Going a bit further, it would be appropriate to set
AllowReducedRedundancy to $true when only 2 or 3 hosts are in the
cluster. This is the default recommendation, but could be used when
additional hosts are present.

$Cluster = Get-Cluster -Name “vSAN”
$VMHosts = $Cluster | Get-VMHost
$KmsCluster = Get-KmsCluster -Name “KMS”

If there are less than 3 hosts then set Allow Reduced Redundancy to $true
If ($VMHosts.Count -lt 4) {
 $AllowReducedRedundancy = $true
} else {
 $AllowReducedRedundancy = $false
}

Start-VsanEncryptionConfiguration -Cluster $Cluster -EncryptionEnabled $true -
EraseDisksBeforeUse $false -AllowReducedRedundancy $AllowReducedRedundancy -KmsCluster
$KmsCluster -Confirm:$false

The Get-VsanView cmdlet can also be used to configure vSAN
Encryption. The VsanVcClusterConfigSystem Managed Object will be
used to modify a Cluster after it is created.

Get the Datacenter Object
$Datacenter = Get-Datacenter -Name "Datacenter"

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 46

Create a new Cluster
$Cluster = New-Cluster -Name “vSANCluster” -VsanEnabled -Location $Datacenter

Setup the VsanVcClusterConfigSystem variable
$VsanVcClusterConfig = Get-VsanView -Id "VsanVcClusterConfigSystem-vsan-cluster-config-
system"

The DataEncryption setting must be put in a Specification
$VsanEncryptionConfig = New-Object -Type VMware.Vsan.Views.VsanDataEncryptionConfig
Enable Encryption
$VsanEncryptionConfig.EncryptionEnabled = $true
Grab the Provider ID for the KMS from vCenter
$VsanEncryptionConfig.KmsProviderId = (Get-KmsCluster -Name
"KMS").ExtensionData.ClusterId
Set Erase Disks Before Use to remove residual data
$VsanEncryptionConfig.EraseDisksBeforeUse = $true

The vSAN Config must be set in a specification
$VsanConfig = New-Object -Type VMware.Vsan.Views.VimVsanReconfigSpec
Set Reduced Redundancy for 2 or 3 node configurations
$VsanConfig.AllowReducedRedundancy = $true
Set the Data Encryption Configuration
$VsanConfig.DataEncryptionConfig = $VsanEncryptionConfig
Execute a Cluster Reconfiguration
$VsanVcClusterConfig.VsanClusterReconfig($Cluster.ExtensionData.MoRef,$VsanConfig)

The process is the same for an existing cluster that will have encryption
enabled.

Get the Cluster
$Cluster = Get-Cluster -Name “vSANCluster”

Setup the VsanVcClusterConfigSystem variable
$VsanVcClusterConfig = Get-VsanView -Id "VsanVcClusterConfigSystem-vsan-cluster-config-
system"

The DataEncryption setting must be put in a Specification
$VsanEncryptionConfig = New-Object -Type VMware.Vsan.Views.VsanDataEncryptionConfig
Enable Encryption
$VsanEncryptionConfig.EncryptionEnabled = $true
Grab the Provider ID for the KMS from vCenter
$VsanEncryptionConfig.KmsProviderId = (Get-KmsCluster -Name
"KMS").ExtensionData.ClusterId
Set Erase Disks Before Use to remove residual data
$VsanEncryptionConfig.EraseDisksBeforeUse = $true

The vSAN Config must be set in a specification
$VsanConfig = New-Object -Type VMware.Vsan.Views.VimVsanReconfigSpec
Set Reduced Redundancy for 2 or 3 node configurations
$VsanConfig.AllowReducedRedundancy = $true
Set the Data Encryption Configuration
$VsanConfig.DataEncryptionConfig = $VsanEncryptionConfig
Execute a Cluster Reconfiguration
$VsanVcClusterConfig.VsanClusterReconfig($Cluster.ExtensionData.MoRef,$VsanConfig)

As mentioned at the end of the Deduplication and Compression
section, enabling Deduplication and Compression along with vSAN
Encryption simultaneously is often desirable, because they both require
an on-disk format change. These can easily be added together with the
samples from the Deduplication and Compression section and this
section:

Get the Cluster
$Cluster = Get-Cluster -Name “vSANCluster”

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 47

Setup the VsanVcClusterConfigSystem variable
$VsanVcClusterConfig = Get-VsanView -Id "VsanVcClusterConfigSystem-vsan-cluster-config-
system"

The DataEfficiency setting must be put in a Specification
$VsanDataEfficiencyConfig = New-Object -TypeName
VMware.Vsan.Views.VsanDataEfficiencyConfig
Compression must be set
$VsanDataEfficiencyConfig.CompressionEnabled = $true
Deduplication must be set
$VsanDataEfficiencyConfig.DedupEnabled = $true

The DataEncryption setting must be put in a Specification
$VsanEncryptionConfig = New-Object -Type VMware.Vsan.Views.VsanDataEncryptionConfig
Enable Encryption
$VsanEncryptionConfig.EncryptionEnabled = $true
Grab the Provider ID for the KMS from vCenter
$VsanEncryptionConfig.KmsProviderId = (Get-KmsCluster -Name
"KMS").ExtensionData.ClusterId
Set Erase Disks Before Use to remove residual data
$VsanEncryptionConfig.EraseDisksBeforeUse = $true

The vSAN Config must be set in a specification
$VsanConfig = New-Object -Type VMware.Vsan.Views.VimVsanReconfigSpec
Set Reduced Redundancy for 2 or 3 node configurations
$VsanConfig.AllowReducedRedundancy = $true
Set the Data Efficiency Configuration
$VsanConfig.DataEfficiencyConfig = $VsanDataEfficiencyConfig
Set the Data Encryption Configuration
$VsanConfig.DataEncryptionConfig = $VsanEncryptionConfig
Execute a Cluster Reconfiguration
$VsanVcClusterConfig.VsanClusterReconfig($Cluster.ExtensionData.MoRef,$VsanConfig)

Configuring NTP
While not completely necessary for vSAN operations, it is still a best
practice for vSphere hosts have to have a consistent time configuration
across all the hosts in the vSAN cluster.

In vCenter 6.7 Update 1, the Cluster Quickstart will set NTP for all hosts
in the cluster.

When not using the Cluster Quickstart found in vCenter 6.7 Update 1,

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 48

NTP can be set for each host individually in the vSphere Client.

Notice that the NTP service must be enabled, contains a list of one or
more NTP servers, the current state of the service, the ability to start it,
and the normal startup policy.

A few cmdlets will be used to perform each of these tasks:

• Add-VMHostNtpServer – NTP Server addresses

• Get/Set-VMHostFirewallException – Allowing the ESXi host to
communicate with the NTP servers

• Get/Set/Start-VmHostService – Starts NTP and sets the
behavior of the service.

Setting NTP on a single vSphere host:

PS /> $VMHost = Get-VMHost -Name "sc1.scdemo.local"
PS /> Add-VmHostNtpServer -VmHost $VMHost -NtpServer "ntp1.eng.vmware.com"
ntp1.eng.vmware.com
PS /> Get-VMHostFirewallException -VMHost $VMHost | Where-Object {$_.Name -eq "NTP
client"} | Set-VMHostFirewallException -Enabled $true

Name Enabled IncomingPorts OutgoingPorts Protocols ServiceRunning
---- ------- ------------- ------------- --------- --------------
NTP Client True 123 UDP False

PS /> Get-VMHostService -VMHost $VMHost | Where-Object {$_.Key -eq "ntpd"} | Start-
VMHostService

Key Label Policy Running Required
--- ----- ------ ------- --------
ntpd NTP Daemon off True False

PS />
PS /> Get-VMHostService -VMHost $VMHost | Where-Object {$_.Key -eq "ntpd"} | Set-
VMHostService -Policy "Automatic"

Key Label Policy Running Required
--- ----- ------ ------- --------

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 49

ntpd NTP Daemon automatic True False

PS />

It is a bit more efficient to set a uniform NTP configuration across an
entire cluster:

$Cluster = Get-Cluster -Name "vSAN"
Foreach ($VMHost in ($Cluster | Get-VMHost)) {
 Add-VmHostNtpServer -VmHost $VMHost -NtpServer "ntp1.eng.vmware.com"
 Get-VMHostFirewallException -VMHost $VMHost | Where-Object {$_.Name -eq "NTP
client"} | Set-VMHostFirewallException -Enabled $true
 Get-VMHostService -VMHost $VMHost | Where-Object {$_.Key -eq "ntpd"} | Start-
VMHostService
 Get-VMHostService -VMHost $VMHost | Where-Object {$_.Key -eq "ntpd"} | Set-
VMHostService -Policy "Automatic"
}

Or all hosts connected to vCenter:

Foreach ($VMHost in Get-VMHost) {
 Add-VmHostNtpServer -VmHost $VMHost -NtpServer "ntp1.eng.vmware.com"
 Get-VMHostFirewallException -VMHost $VMHost | Where-Object {$_.Name -eq "NTP
client"} | Set-VMHostFirewallException -Enabled $true
 Get-VMHostService -VMHost $VMHost | Where-Object {$_.Key -eq "ntpd"} | Start-
VMHostService
 Get-VMHostService -VMHost $VMHost | Where-Object {$_.Key -eq "ntpd"} | Set-
VMHostService -Policy "Automatic"
}

Uniform NTP settings are an often-overlooked vSphere host
configuration setting. The vSAN Health Check now checks for this.

Configuring vSphere HA
Another important cluster service that is typically configured with a
vSAN Cluster is vSphere Availability, commonly referred to as vSphere
HA.

The Set-Cluster cmdlet covers much of the configuration with the use
of the HAEnabled, HAAdmissionControlEnabled, and
HAIsolationResponse parameters.

PS /> Get-Cluster -Name “vSAN” | Set-Cluster -HAEnabled:$true -
HAAdmissionControlEnabled:$true -HAIsolationResponse “Powered Off”

There are some advanced settings that also need to be set for vSAN,
but they are not part of the Set-Cluster cmdlet.

When used in conjunction with vSAN, vSphere HA uses the vSAN data
network for its heartbeats. To configure this properly the vSphere HA –
Advanced Options UI is used, and two additional settings are added.

• das.usedefaultisolationaddress
• das.isolationaddress0

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 50

While using PowerCLI is great to configure vSphere HA, it would be
unfortunate if going into the UI was still required to add these
advanced settings. The New-AdvancedSetting cmdlet can be used to
apply these to the vSAN Cluster’s HA configuration.

PS /> $Cluster = Get-Cluster -Name "vSAN"
PS / > New-AdvancedSetting -Entity $Cluster -Type ClusterHA -Name
"das.isolationaddress0" -Value "192.168.101.253" -Confirm:$false

Name Value Type Description
---- ----- ---- -----------
das.isolationaddr... 192.168.101.253 ClusterHA

PS /Users/jase> New-AdvancedSetting -Entity $Cluster -Type ClusterHA -Name
"das.usedefaultisolationaddress" -Value "False" -Confirm:$false

Name Value Type Description
---- ----- ---- -----------
das.usedefaultiso... False ClusterHA

PS />

Configuring vSphere DRS
While not as important, and not available in all editions of vSphere, an
administrator may desire to configure vSphere Distributed Resource
Scheduling (DRS) as part of a cluster configuration.

The Set-Cluster cmdlet can configure the basic DRS settings using the
DrsEnabled and DrsAutomationLevel paramters.

PS /> Get-Cluster -Name “vSAN” | Set-Cluster -DrsEnabled:$true -DrsAutomationLevel
”FullyAutomated”

Advanced settings for can be configured using the New-
AdvancedSetting cmdlet as well.

Configuring Guest TRIM & UNMAP Support
Data is thin provisioned when written to a vSAN data store by default.
As a virtual machine’s hard disks grow to their provisioned capacity,
additional capacity is consumed on a vSAN datastore. When data is
deleted from that virtual machine, the capacity is removed inside the
guest’s disks, but not removed from the vSAN datastore.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 51

With the release of vSAN 6.7 Update 1, guest level TRIM & UNMAP
support was added. The addition of Guest TRIM & UNMAP support on
vSAN allows vSAN datastore capacity to be reclaimed by vSAN.

Guest TRIM & UNMAP support must be enabled for a vSAN cluster, and
guests must meet some requirements to be able to work with Guest
TRIM & UNMAP on vSAN.

• Windows guests – Minimum VM Hardware version 11
• Linux guests – Minimum VM Hardware version 13
• disk.scsiUnmapAllowed flag – not set to false
• Guest OS – must be able to identify virtual disk as thin
• Enabled – At vSAN Cluster level
• VM’s – Must be power cycled after setting to use

More information can be found about Guest TRIM & UNMAP on
StorageHub in Space Efficiency Technologies for vSAN.

Initially this feature could only be enabled using the Ruby vSphere
Console (RVC). This required logging into the RVC, navigating to the
Cluster object in the RVC, and then executing the vsan.unmap_support
action.

PowerCLI 11.2 introduced the ability to configure this setting using the
Get/Set-VsanClusterConfiguration cmdlets. It is even easier using
PowerCLI to set, and report on, this setting in a vSAN 6.7 Update 1
cluster.

To determine if a vSAN cluster has Guest TRIM & UNMAP enabled, the
following code may be used:

PS /> Get-VsanClusterconfiguration -Cluster (Get-Cluster -Name “vSAN”) | Select-Object
Name, guestTrimUnmap

Name GuestTrimUnmap
----- --------------
vSAN False

Enabling Guest TRIM & UNMAP is just as easy:

PS /> Get-VsanClusterconfiguration -Cluster (Get-Cluster -Name “vSAN”) | Set-
VsanClusterConfiguration -guestTrimUnmap $true

Name GuestTrimUnmap
----- --------------
vSAN True

Setting the Default Storage Policy for a vSAN Datastore
When initially creating a vSAN cluster, the vSAN datastore is assigned a
generic “vSAN Default Storage Policy.” This policy has single-site,
RAID1 protection for vSAN objects.

https://storagehub.vmware.com/t/vmware-vsan/vsan-space-efficiency-technologies/

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 52

Unless an alternate policy is chosen, this default policy is assigned to
newly created objects on the vSAN datastore. While assigning
alternate policies are easy with the vSphere Client, either upon
deployment, or afterward, some objects are not as easily assigned an
alternate storage policy. Content Libraries stored on vSAN, a folder
(vSAN Namespace) with ISOs, and the like will inherit the default
storage policy.

PowerCLI 11.3 added the -Datastore parameter to the
Get/Set-SpbmEntityConfiguration cmdlet that allows for assigning a
default storage policy for a vSAN datastore.

To use the Set-SpbmEntityConfiguration, it is necessary to get the
existing configuration.

This is easiest if the datastore object is already set to a variable.

PS /> Get-Datastore -Name "vsandatastore"

Name FreeSpaceGB CapacityGB
---- ----------- ----------
vsanDatastore 7,012.473 8,942.438

PS /> $Datastore = Get-Datastore -Name "vsandatastore"

The Get-SpbmEntityConfiguration cmdlet will return several values,
including the currently assigned storage policy.

PS /> Get-SpbmEntityConfiguration $Datastore

Entity Storage Policy Status Time Of Check
------ -------------- ------ -------------
vsanDatastore vSAN Default Storage Policy

Before being able to assign a new policy, it is necessary to use a policy
that exists in vCenter.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 53

PS /> Get-SpbmStoragePolicy

Name Description Rule Sets Common Rules
---- ----------- --------- ------------
vSAN Stretched De... vSAN Stretched Cluster Storage Pol... {(VSAN... {}
Preferred Affinity vSAN Stretched Cluster Preferred S... {(VSAN... {}
VVol No Requireme... Allow the datastore to determine t...
VM Encryption Policy Sample storage policy for VMware's... {} {}
vSAN Stretched Cl... vSAN Stretched Cluster Default Pol... {(VSAN... {}
Host-local PMem D... Storage policy used as default for... {} {PMem...
vSAN Default Stor... Storage policy used as default for... {(VSAN... {}
RAID5 vSAN Cluster - RAID5 {(VSAN... {}

Setting a Storage Policy object to a variable will make the Storage
Policy Object easier to use:

PS /> $RAID5Policy = Get-SpbmStoragePolicy -Name “RAID5”
PS />

With the desired Storage Policy object set to a variable, and the
Datastore object set to a variable, the Set-SpbmEntityConfiguration
cmdlet can easily set the default storage policy to a vSAN datastore.

PS /> Get-SpbmEntityConfiguration $Datastore | Set-SpbmEntityConfiguration -
StoragePolicy $RAID5Policy

Entity Storage Policy Status Time Of Check
------ -------------- ------ -------------
vsanDatastore RAID5

Any new vSAN objects written to the vSAN datastore will use the

newly assigned storage policy.

Assigning a vSAN License to a Cluster
After configuring vSAN on a vSphere Cluster, it will continue to operate
for 60 days without a license. It is important to assign a vSAN license to
a cluster before using it in production.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 54

The Get-View cmdlet can be used to connect to the License
Assignment Manager, and update the license assigned to a resource,
such as the Cluster for vSAN:

PS /> $LicenseManager = Get-View
$global:DefaultVIServer.ExtensionData.Content.LicenseManager

PS /> $LicenseAssignmentManager= Get-View $LicenseManager.LicenseAssignmentManager

The license will need to be assigned to the cluster compute resource.

PS /> $ClusterComputeResource = (Get-Cluster -Name $Cluster | Get-View)

This isn’t to be confused with the Cluster itself:

PS /> $Cluster = Get-Cluster -Name $Cluster

The vSAN license is added to the Cluster Compute Resource, and not
the cluster itself. Use the $ClusterComputeResource object instead of
the $Cluster.

The license needs to be present in vCenter before it can be assigned to
a vSAN host. An AddLicense method can be used with the
$LicenseManager object to add the new license to vCenter:

PS /> $LicenseManager.AddLicense($License,$null)

Only the actual license key is required upon assignment, so there is no
need to retrive the license as an object:

PS /> $License = "XXXXX-XXXXX-XXXXX-XXXXX-XXXXX"

The license can then be assigned to the Cluster Compute Resource:

PS />
$LicenseAssignmentManager.UpdateAssignedLicense($ClusterComputeResource.Moref.value,$License,"vSAN")

Putting this altogether, this might look something like this:

License
$License = "XXXXX-XXXXX-XXXXX-XXXXX-XXXXX"

Cluster
$Cluster = Get-Cluster -Name “Cluster”

Get the License Manager View and assign it to the LicenseManager variable
$LicenseManager = Get-View $global:DefaultVIServer.ExtensionData.Content.LicenseManager

Get the LicenseAssignmentManager so a license can be assigned
$LicenseAssignmentManager= Get-View $LicenseManager.LicenseAssignmentManager

Get the Managed Object Reference for the vSAN Cluster so the license can be applied to it.
$ClusterComputeResource = (Get-Cluster -Name $Cluster | Get-View)

Retrieve a list of the current vSAN licenses added to vCenter

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 55

$CurrentVsanLicenses = $LicenseManager.Licenses | Where-Object {$_.EditionKey -like "vsan.*"}

Determine whether the license is already present or not in vCenter
if ($License -in $CurrentVsanLicenses.LicenseKey) {
 # Already present, so good
 Write-Host "$License License Already Present in vCenter"

 } else {
 # Not present, so we need to add it to vCenter
 Write-Host "$License being added to vCenter"
 $LicenseManager.AddLicense($License,$null)
 }
Assign the license to the vSAN Cluster
$LicenseAssignmentManager.UpdateAssignedLicense($ClusterComputeResource.Moref.value,$License,"vSAN")

A sample of this script can be found here:
https://code.vmware.com/samples/6407

Setting Automatic Rebalance Options in vSAN 6.7 Update 3
Proactive rebalancing was added to vSAN with the release of 6.7
Update 3. PowerCLI 11.4 supports reporting and configuring this
feature’s settings.

The Get/Set-VsanClusterConfiguration cmdlets add the ability to enable
or disable this Automatic Rebalance, but also configure the Rebalance
Threshold.

Get-VsanClusterConfiguration will return the current settings:

PS /> Get-VsanClusterConfiguration -Cluster Cluster1 | Select-Object -Property
Cluster,ProactiveRebalanceEnabled, ProactiveRebalanceThreshold

Cluster ProactiveRebalanceEnabled ProactiveRebalanceThreshold
------- ------------------------- ---------------------------
Cluster1 False 30

Enabling Automatic Rebalancing is performed in the same fashion as
configuring many of the other cluster features:

https://code.vmware.com/samples/6407

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 56

PS /> Get-VsanClusterConfiguration -Cluster Cluster1 | Set-VsanClusterConfiguration -
ProactiveRebalanceEnabled $true

Cluster VsanEnabled IsStretchedCluster Last HCL Updated
------- ----------- ------------------ ----------------
Cluster1 True True 8/20/19 3:05:00 AM

If it is desired to change the Rebalance Threshold, that is also easy:

PS /> Get-VsanClusterConfiguration -Cluster Cluster1 | Set-VsanClusterConfiguration -
ProactiveRebalanceThreshold 25

Cluster VsanEnabled IsStretchedCluster Last HCL Updated
------- ----------- ------------------ ----------------
Cluster1 True True 8/20/19 3:05:00 AM

PS /> Get-VsanClusterConfiguration -Cluster Cluster1 | Select-Object -Property
Cluster,ProactiveRebalanceEnabled, ProactiveRebalanceThreshold

Cluster ProactiveRebalanceEnabled ProactiveRebalanceThreshold
------- ------------------------- ---------------------------
Cluster1 True 25

Operational Recipes
A few sample ‘Recipes’ are included in this document to detail the
process of how one would go about putting together PowerCLI scripts
for vSAN together.

These will only be code snippets included in this document. Each recipe
will include a link to a competed sample script in the respective
summary section.

Important Note: The code samples included in this document are
not supported by VMware. The code included is only provided as
sample code for the purpose of demonstrating different tasks using
PowerCLI.

Host Maintenance & Tasks
vSAN is component of vSphere. Updating and maintaining vSAN is
typically as easy as updating vSphere.

The core function of updating a vSphere host, where vSAN is enabled
or not, is putting that host in Maintenance Mode. PowerCLI has had the
capability of doing this for quite a while with the Set-VMHost command:

PS /> Set-VMHost -VMHost "sc1.scdemo.local" -State "Maintenance"

Name ConnectionState PowerState
---- --------------- ----------
sc1.scdemo.local Maintenance PoweredOn

The default Maintenance Mode for vSAN Clusters is “Ensure

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 57

Accessibility” and should not have to be specified. It can however be
specified to guarantee the Maintenance Mode choice:

PS /> Set-VMHost -VMHost "sc1.scdemo.local" -State "Maintenance" -
VsanDataMigrationMode "EnsureAccessibility"

Name ConnectionState PowerState
---- --------------- ----------
sc1.scdemo.local Maintenance PoweredOn

Taking a host out of Maintenance Mode is just as easy:

PS /> Set-VMHost -VMHost "sc1.scdemo.local" -State "Connected"

Name ConnectionState PowerState
---- --------------- ----------
sc1.scdemo.local Connected PoweredOn

Host Maintenance Mode What-If in vSAN 6.7 U3
PowerCLI 11.4 introduced Get-VsanEnterMaintenanceModeReport to
easily display the effects of putting a host into maintenance mode.

This can give administrators a preemptive view of what objects will
become inaccessible should a host go into maintenance mode.

PS /> Get-VsanEnterMaintenanceModeReport -VMHost "w3-hs1-
050101.eng.vmware.com" -VsanDataMigrationMode ensureObjectAccessibility

MaintenanceModeVMHost VsanDataMigrationMode OverallStatus
--------------------- --------------------- -------------
w3-hs1-050101.eng.vmware… ensureObjectAccessibility green

Using the Format-List option, more information can be retrieved:

PS /> Get-VsanEnterMaintenanceModeReport -VMHost "w3-hs1-
050101.eng.vmware.com" -VsanDataMigrationMode ensureObjectAccessibility |fl

MaintenanceModeVMHost : w3-hs1-050101.eng.vmware.com
VsanDataMigrationMode : ensureObjectAccessibility
OverallStatus : green
InaccessibleVsanObject :
NoncompliantVsanObject : {b8a94c5d-2db8-ab00-0463-ecf4bbf0b8d8, 3eb44c5d-
d887-7a7c-3c3a-ecf4bbf0b8d8, 92cd6d5c-912b-0deb-85ba-ecf4bbf0b8d8,
09b94c5d-c7a8-43e7-99c9-ecf4bbf0d200…}

Administrators can execute this cmdlet with each of the different
VsanDataMigrationMode choices to quickly determine which ones
would have the least amount of overall impact on the cluster.

These options are:

VsanDataMigrationMode Maintenance Mode

evacuateAllData Full Data Migration

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 58

ensureObjectAccessibility Ensure Accessibility

noAction No Data Migration

These options are: The vSAN Objects that will become Non-Compliant
are contained in the NoncompliantVsanObject value.

PS /> (Get-VsanEnterMaintenanceModeReport -VMHost "w3-hs1-
050101.eng.vmware.com" -VsanDataMigrationMode
ensureObjectAccessibility).NoncompliantVsanObject

ComplianceStatus HealthStatus TimeOfCheck StoragePolicy
---------------- ------------ ----------- -------------
compliant healthy 8/20/19 4:01:26 PM vSAN Default ...
compliant healthy 8/20/19 4:01:26 PM vSAN Default ...
compliant healthy 8/20/19 4:01:26 PM vSAN Default ...
compliant healthy 8/20/19 4:01:26 PM vSAN Mirrori...
compliant healthy 8/20/19 4:01:26 PM vSAN Default ...
compliant healthy 8/20/19 4:01:26 PM vSAN Default ...
...
compliant healthy 8/20/19 4:01:26 PM vSAN Default ...
compliant healthy 8/20/19 4:01:26 PM vSAN Default ...
compliant healthy 8/20/19 4:01:26 PM vSAN Default ...

*Note: ComplianceStatus returns the current, not expected Compliance
Status. Objects included in the NoncompliantVsanObject value will
become noncompliant.

This information is a bit incomplete in the default output, but the vSAN
Object, its Uuid, and more information is available in the results.
Selecting the VM and Typ of object can provide more visibility.

PS /> (Get-VsanEnterMaintenanceModeReport -VMHost "w3-hs1-
050101.eng.vmware.com" -VsanDataMigrationMode
ensureObjectAccessibility).NoncompliantVsanObject | Select-Object -Property
VM,Type | Sort-Object VM, Type

VM Type
-- ----
 StatsDb
ANS VDisk
ANS VmNamespace
DC2 VmSwap
DC2 VDisk
DC2 VmNamespace
HCX VDisk
HCX VmNamespace
...
WSFC1 VmSwap
WSFC1 VDisk
WSFC1 VDisk
WSFC1 VDisk
WSFC1 VmNamespace
WSFC2 VmSwap
WSFC2 VDisk
WSFC2 VmNamespace

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 59

Patch Management with Update Manager
Patch management is handled by VMware Update Manager. PowerCLI
does have Update Manager support, but it is only available in
PowerShell, and not currently in PowerShell Core. These cmdlets are
currently only available on Windows systems using PowerShell and
PowerCLI. Baselines are associated.

The Get-Baseline cmdlet will return the baselines available on the
Update Manager instance:

PS C:\> Get-Baseline -TargetType Host

Name Description Id Type Targt LastUpdateTime Num
---- ----------- -- ---- ----- -------------- -----
BNX Updated BNX Drivers 10 Patch Host 1/21/2019 11:15:0... 6
VMware ESXi 6.5.0... VMware ESXi 6.5.0... 9 Patch Host 1/18/2019 4:12:41 PM 2
VMware ESXi 6.7.0... VMware ESXi 6.7.0... 8 Patch Host 1/16/2019 12:45:4... 2
Non-Critical Host... A predefined base... 3 Patch Host 1/7/2019 1:03:55 PM 132
Critical Host Pat... A predefined base... 2 Patch Host 1/7/2019 1:03:55 PM 28

Baseline Groups are not returned by Get-Baseline cmdlet.

For a baseline to be checked or patched against, first a baseline must
be attached to a host or cluster.

To make the attach process easier, let’s set our baselines to variables:

PS C:\> $BaselineNonCritical = Get-Baseline -Name "Non-Critical Host Patches
(Predefined)"
PS C:\> $BaselineCritical = Get-Baseline -Name " Critical Host Patches (Predefined)"

With the baselines set to variables, it is easy to attach these to a vSAN
cluster:

PS C:\> $Cluster = Get-Cluster -Name "vSAN"
PS C:\> Attach-Baseline -Baseline $BaselineCritical -Entity $Cluster
PS C:\> Attach-Baseline -Baseline $BaselineNonCritical -Entity $Cluster
PS C:\>

It is also easy to scan the vSAN Cluster for compliance with the
attached baselines:

PS C:\> $Cluster | Test-Compliance -UpdateType HostPatch -RunAsync

Name State % Complete Start Time Finish Time
---- ----- ---------- ---------- -----------
Scan entity Running 0 11:25:39 AM

For a newly configured environment that does not have any workloads,
all hosts could be scanned simultaneously:

PS C:\> Foreach ($ESXhost in ($Cluster | Get-VMHost)) { Test-Compliance -Entity
$ESXhost -UpdateType HostPatch -RunAsync}

Name State % Complete Start Time Finish Time
---- ----- ---------- ---------- -----------
Scan entity Queued 0 12:00:00 AM
Scan entity Queued 0 12:00:00 AM

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 60

Scan entity Running 0 11:26:42 AM
Scan entity Queued 0 12:00:00 AM
Scan entity Queued 0 12:00:00 AM
Scan entity Queued 0 12:00:00 AM

After hosts have been scanned, the compliance with attached
baselines can be reported on using Get-Compliance:

PS C:\> $Cluster | Get-Compliance

Entity Baseline Status
------ -------- ------
sc1.scdemo.local Critical Host Patches (Predefined) Compliant
sc1.scdemo.local Non-Critical Host Patches (Prede... NotCompliant
sc1.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant
sc6.scdemo.local Critical Host Patches (Predefined) Compliant
sc6.scdemo.local Non-Critical Host Patches (Prede... NotCompliant
sc6.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant
sc3.scdemo.local Critical Host Patches (Predefined) Compliant
sc3.scdemo.local Non-Critical Host Patches (Prede... NotCompliant
sc3.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant
sc5.scdemo.local Critical Host Patches (Predefined) Compliant
sc5.scdemo.local Non-Critical Host Patches (Prede... NotCompliant
sc5.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant
sc2.scdemo.local Critical Host Patches (Predefined) Compliant
sc2.scdemo.local Non-Critical Host Patches (Prede... NotCompliant
sc2.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant
sc4.scdemo.local Critical Host Patches (Predefined) Compliant
sc4.scdemo.local Non-Critical Host Patches (Prede... NotCompliant
sc4.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant

If the output is a bit hard to follow, it might be easier to sort on the
name of the ESXi host:

PS C:\> $Cluster | Get-Compliance | Sort-Object -Property Entity, Baseline

Entity Baseline Status
------ -------- ------
sc1.scdemo.local Non-Critical Host Patches (Prede... NotCompliant
sc1.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant
sc1.scdemo.local Critical Host Patches (Predefined) Compliant
sc2.scdemo.local Critical Host Patches (Predefined) Compliant
sc2.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant
sc2.scdemo.local Non-Critical Host Patches (Prede... NotCompliant
sc3.scdemo.local Non-Critical Host Patches (Prede... NotCompliant
sc3.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant
sc3.scdemo.local Critical Host Patches (Predefined) Compliant
sc4.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant
sc4.scdemo.local Non-Critical Host Patches (Prede... NotCompliant
sc4.scdemo.local Critical Host Patches (Predefined) Compliant
sc5.scdemo.local Critical Host Patches (Predefined) Compliant
sc5.scdemo.local Non-Critical Host Patches (Prede... NotCompliant
sc5.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant
sc6.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant
sc6.scdemo.local Non-Critical Host Patches (Prede... NotCompliant
sc6.scdemo.local Critical Host Patches (Predefined) Compliant

Updates are typically only applied to hosts that are not compliant.

By piping the results through Where-Object, it is easy to only return
those that are NotCompliant.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 61

It will likely also be beneficial to sort the output on the ESXi hostname
for clarity.

PS C:\> $Cluster | Get-Compliance | Where-Object {$_.Status -eq "NotCompliant"} | Sort-
Object -Property Entity

Entity Baseline Status
------ -------- ------
sc1.scdemo.local Non-Critical Host Patches (Prede... NotCompliant
sc2.scdemo.local Non-Critical Host Patches (Prede... NotCompliant
sc3.scdemo.local Non-Critical Host Patches (Prede... NotCompliant
sc4.scdemo.local Non-Critical Host Patches (Prede... NotCompliant
sc5.scdemo.local Non-Critical Host Patches (Prede... NotCompliant
sc6.scdemo.local Non-Critical Host Patches (Prede... NotCompliant

Above, each of hosts are not compliant with the Non-Critical Host
Patches baseline.

The Update-Entity cmdlet is used to remediate a cluster or host. A few
things to consider though, are that the operation will require a
confirmation, and the cmdlet requires some time. The -RunAsync
option will be necessary to prevent an error being returned:

PS C:\> $Cluster | Update-Entity -Baseline $BaselineNonCritical -Confirm:$false -
RunAsync

Name State % Complete Start Time Finish Time
---- ----- ---------- ---------- -----------
Remediate entity Queued 0 12:00:00 AM

Only hosts that are not compliant will be updated with the baseline.
Update Manager will cycle through each of the hosts and update them.

PS C:\> $Cluster | Get-Compliance | Sort-Object -Property Entity

Entity Baseline Status
------ -------- ------
sc1.scdemo.local Non-Critical Host Patches (Prede... Compliant
sc1.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant
sc1.scdemo.local Critical Host Patches (Predefined) Compliant
sc2.scdemo.local Critical Host Patches (Predefined) Compliant
sc2.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant
sc2.scdemo.local Non-Critical Host Patches (Prede... Compliant
sc3.scdemo.local Non-Critical Host Patches (Prede... Compliant
sc3.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant
sc3.scdemo.local Critical Host Patches (Predefined) Compliant
sc4.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant
sc4.scdemo.local Non-Critical Host Patches (Prede... Compliant
sc4.scdemo.local Critical Host Patches (Predefined) Compliant
sc5.scdemo.local Critical Host Patches (Predefined) Compliant
sc5.scdemo.local Non-Critical Host Patches (Prede... Compliant
sc5.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant
sc6.scdemo.local VMware ESXi 6.7.0 U1 (Patch ESXi... Compliant
sc6.scdemo.local Non-Critical Host Patches (Prede... Compliant
sc6.scdemo.local Critical Host Patches (Predefined) Compliant

Setting the Cluster Baseline for vSAN 6.7 Update 3
For customers running vSAN 6.7 Update 3, the ability to select the
remediation settings for the cluster, gives them the choice of VUM
creating a baseline that recommends the latest release of vSAN, only
patches for the release they are on, or no recommendation at all.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 62

vSAN recommendations from VUM have previously created baselines
that upgrade clusters to the most recent release of vSAN.

With ability to configure VUM recommendations for vSAN on a per
cluster basis, administrators have more control when patching or
upgrading clusters with less overall effort.

A single cluster’s remediation settings can be updated via the UI. But
this doesn’t scale easily when there are tens, hundreds, or thousands of
clusters in an environment.

Consider the use case of a retail customer with hundreds of remote
sites. The majority of sites are on the same type of hardware and have
the same applications, but there are a few sites that have some specific
dependencies related to either the hardware or applications hosted.

PowerCLI 11.4 introduces the ability to retrieve or configure the
remediation setting very easily.

PS C:\> Get-VsanClusterConfiguration -Cluster Cluster1 | Select-Object
Cluster,VsanBaselinePreference

Cluster VsanBaselinePreference
------- ----------------------
Cluster1 LatestPatch

PS C:\> Get-VsanClusterConfiguration -Cluster Cluster1 | Set-VsanClusterConfiguration -
VsanBaselinePreference LatestRelease

Cluster VsanEnabled IsStretchedCluster Last HCL Updated
------- ----------- ------------------ ----------------
Cluster1 True True 8/20/19 3:05:00 AM

This can be extended very quickly to a large number of clusters. Taking
the retail customer’s use case into account, here is an example of

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 63

configuring the remediation settings clusters that meet a particular
filter:

PS C:\> Get-Cluster -Name Remote*| Get-VsanClusterConfiguration | Set-
VsanClusterConfiguration -VsanBaselinePreference LatestPatch

Cluster VsanEnabled IsStretchedCluster Last HCL Updated
------- ----------- ------------------ ----------------
Remote1 True False 8/20/19 3:05:00 AM
Remote2 True False 8/20/19 3:05:00 AM
Remote3 True False 8/20/19 3:05:00 AM
Remote4 True False 8/20/19 3:05:00 AM
Remote5 True False 8/20/19 3:05:00 AM
Remote6 True False 8/20/19 3:05:00 AM

Additional logic could be added to check for hardware, applications, or
more to ensure that the right vSAN Baseline preference is set for each
cluster.

Installing a VIB on a vSAN Host
Different versions of vSphere often have different driver requirements
for specific hardware. Looking at this from a vSAN view, an
administrator often times needs to install an updated driver for a
storage controller.

vSAN is still part of vSphere and relies on other pieces of the stack to
work optimally. Driver updates for network cards is another item to
consider as well.

Whether they are storage controller drivers, network card drivers, or
other packages, are typically installed using the vSphere Installable
Bundle (VIB) specification. VIBs are typically provided by vendors in a
.vib file included in a zipped file. Sometimes the vib will be properly
signed and sometimes not. Sometimes the vib will be included in an
“offline bundle” zip file.

David Stamen, a Technical Marketing Engineer on the vSphere team
covers how to install a vib on an ESXi host:
https://davidstamen.com/2016/03/03/using-powercli-to-install-host-
vibs/

Breaking down his code, we can see that he’s using the Get-EsxCli
cmdlet to connect to an instance of the esxcli command line utility on
each connected vSphere host, setting some parameters for the vib,
invoking the software install process, and then verifying the vib was
installed properly.

Define Variables
$Cluster = Get-Cluster -Name "vSAN"
$vibpath = "/vmfs/volumes/NFS01/VIB/cisco/scsi-fnic_1.6.0.24-1OEM.600.0.0.2494585.vib"

Get each host in specified cluster that meets criteria
Get-VMhost -Location $Cluster | where { $_.PowerState -eq "PoweredOn" -and
$_.ConnectionState -eq "Connected" } | foreach {

 Write-host "Preparing $($_.Name) for ESXCLI" -ForegroundColor Yellow

 $ESXCLI = Get-EsxCli -VMHost $_ -V2

 # Install VIBs

https://davidstamen.com/2016/03/03/using-powercli-to-install-host-vibs/
https://davidstamen.com/2016/03/03/using-powercli-to-install-host-vibs/

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 64

 Write-host "Installing VIB on $($_.Name)" -ForegroundColor Yellow

 # Create Installation Arguments
 $insParm = @{
 viburl = $vibpath
 dryrun = $false
 nosigcheck = $true
 maintenancemode = $false
 force = $false
 }

 $action = $ESXCLI.software.vib.install.Invoke($insParm)

 # Verify VIB installed successfully
 if ($action.Message -eq "Operation finished successfully."){
 Write-host "Action Completed successfully on $($_.Name)"
 } else {
 Write-host $action.Message
 }
}

• Notice that the vib path is on an NFS datastore.

• Also notice that nosigcheck is $true – Some vibs are not signed
by the distributing vendor. These will cause issues if using
SecureBoot.

Rebooting a vSAN Host
Rebooting a vSAN host is as simple as putting a host in maintenance
mode and executing a reboot operation.

Putting a vSAN Host in Maintenance Mode using Set-VMHost:

PS /> Set-VMHost -VMHost sc1.scdemo.local -State Maintenance -VsanDataMigrationMode
"EnsureAccessibility"

Name ConnectionState PowerState NumCpu Version
---- --------------- ---------- ------ -------
sc1.scdemo.local Maintenance PoweredOn 2 6.7.0

The Restart-VMHost cmdlet is then used to reboot the host. RunAsync
is used because the reboot process will take longer than the command
timeout. And Confirm:$false is used to prevent a prompt.

PS /> Restart-VMHost sc1.scdemo.local -RunAsync -Confirm:$false

Name State % Complete Start Time Finish Time
---- ----- ---------- ---------- -----------
RebootHost_Task

When the host has rebooted and become available again, we can set
the state to Connected to exit Maintenance Mode with Set-VMHost:

PS /> Set-VMHost -VMHost sc1.scdemo.local -State Connected

Name ConnectionState PowerState NumCpu Version
---- --------------- ---------- ------ -------
sc1.scdemo.local Connected PoweredOn 2 6.7.0

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 65

Putting these together would look something like this:

Get the host object
$VMHost = "sc1.scdemo.local"

Put the host in maintenance mode
Set-VMHost $VMHost -State Maintenance -VsanDataMigrationMode "EnsureAccessibility"

Once in maintenance mode, restart the host
Restart-VMHost $VMHost -RunAsync -Confirm:$false

Give status updates while waiting to reboot
Write-Host "Waiting on $VMHost to reboot"
While ((Get-VMHost $VMHost).ConnectionState -ne "NotResponding") {
 Start-Sleep 1
 Write-Host "." -NoNewLine
}
Write-Host ""

Give status updates while waiting for the host to come back online
Write-Host "$VMHost is rebooting"

While ((Get-VMhost $VMHost).ConnectionState -eq "NotResponding") {
 Start-Sleep 2
 Write-Host "." -NoNewLine
}
Write-Host ""
Write-Host "$VMHost is online"
Set-VMHost $VMHost -State Connected

The output looks something like this:

Name ConnectionState PowerState NumCpu Version
---- --------------- ---------- ------ -------
sc1.scdemo.local Maintenance PoweredOn 2 6.7.0

ServerId : /VIServer=vsphere.local\administrator@10.198.6.18:443/
State : Success
IsCancelable : False
PercentComplete : 100
StartTime : 1/23/19 12:47:33 PM
FinishTime : 1/23/19 12:47:33 PM
ObjectId : HostSystem-host-13
Result :
Description : Initiate host reboot
ExtensionData : VMware.Vim.Task
Id : Task-task-6308
Name : RebootHost_Task
Uid : /VIServer=vsphere.local\administrator@10.198.6.18:443/Task=Task-task-
6308/
CmdletTaskInfo :

Waiting on sc1.scdemo.local to reboot
.....
sc1.scdemo.local is rebooting
...
sc1.scdemo.local is online
sc1.scdemo.local Connected PoweredOn 2 6.7.0

Powering off a vSAN Cluster

Another common request is, how would an administrator power off an
entire vSAN Cluster?

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 66

Why would someone want to do that? Maybe the cluster is being
moved to another location or facility.

This section will focus on the steps identified in KB article 2142676.

With the exception of vCenter, all virtual machines must be shut down.

To get the VMs that have VMware Tools installed and are not vCenter,
the ToolsStatus extended configuration property can be used. We’ll
put these in an array:

PS /> $VMsWithTools = Get-VM | Where-Object {($_.ExtensionData.Guest.ToolsStatus -eq
'toolsOk') -and ($_.Name -ne "VCSA")}

VM’s without VMware Tools installed, or VM’s the VM Tools in a quasi-
available state can be put in a separate array:

PS /> $VMsWithoutTools = Get-VM | Where-Object {($_.ExtensionData.Guest.ToolsStatus -ne
'toolsOk') -and ($_.Name -ne "VCSA")}

VM’s with VMware Tools up and running can be shutdown cleanly
through their GuestOS.

PS /> Foreach ($VM in $VMsWithTools) { Stop-VMGuest -Confirm:$false}

Guests that cannot accept a shutdown command to the Guest OS can
be stopped:

PS /> Foreach ($VM in $VMsWithoutTools) { Stop-VM -Confirm:$false}

Now to confirm that there are no VM’s running other than vCenter:

PS /> $RunningVMs = Get-VM | Where-Object {($_.PowerState -eq 'PoweredOn') -and
($_.Name -ne 'VCSA')}

PS /> $RunningVMs.Count
0

It is recommended that vCenter is moved to the first host to make it
easy to restart it later. To do that we’ll need to get a list of hosts in the
cluster, sorted by the host, and only select the first one. We’ll move
vCenter to that host:

PS /> $FirstHost = $Cluster | Get-VMHost | Sort-Object Name | Select-Object -First 1
PS /> Get-VM -Name VCSA | Move-VM -Destination $FirstHost

Name PowerState Num CPUs MemoryGB
---- ---------- -------- --------
VCSA PoweredOn 2 16.000

Before going further, let’s make certain there are no inaccessible vSAN
objects. This isn’t exposed natively in PowerCLI today, but Get-
VsanView can provide some additional visibility:

https://kb.vmware.com/kb/2142676

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 67

PS /> $VsHlth = Get-VsanView -Id VsanVcClusterHealthSystem-vsan-cluster-health-system
PS /> $CluMoRef = $Cluster.ExtensionData.MoRef
PS /> $Test = ‘objectHealth’
PS /> $View = ‘defaultView’
PS /> $ObjHlth =
$VsHlth.VsanQueryVcClusterHealthSummary($CluMoRef,$null,$null,$null,$test,$null,$view)
PS /> $ObjHlth.ObjectHealth.ObjectHealthDetail

NumObjects Health ObjUuids
---------- ------ --------
 14 healthy {c8c8485c-943b-
c6b6-ef90-00505682136c, 7aca485c-d413-3c36-df37-005056828cb4, 7eca485c-8e2e-6e20-3f7e-
005056828cb4, cbc8485c-0dab-4a12-9c96-00505682136c...}
 0 nonavailabilityrelatedincompliance
 0 reducedavailabilitywithpolicypendingfailed
 0 reducedavailabilitywithnorebuilddelaytimer
 0 reducedavailabilitywithpolicypending
 0 datamove
 0 inaccessible
 0 nonavailabilityrelatedincompliancewithpolicypendingfailed
 0 reducedavailabilitywithactiverebuild
 0 nonavailabilityrelatedincompliancewithpolicypending
 0 nonavailabilityrelatedreconfig
 0 reducedavailabilitywithnorebuild

If there are inaccessible objects, remove them before proceeding.

vCenter could be shutdown at this point, but before shutting vCenter
down, it would advantageous to put a list of all the vSAN nodes in an
array first.

The Get-VMHost cmdlet will retrieve the vSAN hosts:

PS /> $HostList = $Cluster | Get-VMHost | Sort-Object Name

With all of the hosts in the $HostList variable, vCenter can be shut
down.

Shutdown vCenter
Get-VM -Name “VCSA” | Stop-VMGuest -Confirm:$false}

Because vCenter is now down, our VIServer connection to vCenter is
no longer available. The $HostList variable contains each of the host,
which can be directly connected to.

By directly connecting to each of them, we can put them in
maintenance mode and power them down.

Set our host credentials
$User = "root"
$Pass = "VMware1!"

Loop through each of the hosts in $HostList
Foreach ($VMHost in $HostList.Name) {

 # Connect directly to the current host
 Connect-VIServer -Server $VMHost -user $User -password $Pass

 # Put the current host into maintenance mode with No Action for vSAN data
 Set-VMHost -Server $VMHost -State Maintenance -VsanDataMigrationMode
"NoDataMigration"

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 68

 # Wait for the host to enter maintenance mode
 While ((Get-VMHost -Server $VMHost -Name $VMHost).ConnectionState -ne
"Maintenance") {
 Start-Sleep 1
 }

 # When the host has entered maintenance mode, power the host off
 Stop-VMHost -Server $VMHost -Confirm:$false -RunAsync

 # Disconnect from the host
 Disconnect-VIServer -Server $VMHost -Confirm:$false
}

Putting all of these parts together, a single script to bring a whole
cluster down would look something like this:

Setup variables
$VCSA = ‘VCSA’

Setup the Cluster Object
$Cluster = Get-Cluster -Name "vSAN"

Get all of the VM's on the cluster
$PoweredOnVMs = $Cluster | Get-VM | Where-Object {($_.PowerState -eq 'PoweredOn') -and
($_.Name -ne $VCSA)}

Enumerate the Powered On VM's and power them off - Except for vCenter
Foreach ($VM in $PoweredOnVMs) {
 $Guest = Get-VM -Name $VM
 Write-Host "Shutting down $Guest"
 If ($Guest.ExtensionData.Guest.ToolsStatus -eq 'toolsOk') {
 # If VMware Tools are Ok, shutdown GuestOS
 $Guest | Stop-VMGuest -Confirm:$false
 } else {
 # If VMtools aren’t Ok or not installed Hard Power Off
 $Guest | Stop-VM -Confirm:$false -RunAsync
 }
}
Wait until all VM's other than vCenter are powered off
While ((Get-VM | Where-Object {($_.PowerState -eq 'PoweredOn') -and ($_.Name -ne
'VCSA')}).Count -gt "0") {
 Start-Sleep 1
 Write-Host “.” -NoNewLine
}
Write-Host “”
Write-Host "All non-vCenter VM's are powered off"

Move vCenter to the first host in the cluster alphabetically
$FirstHost = $Cluster | Get-VMHost | Sort-Object Name | Select-Object -First 1
Get-VM -Name VCSA | Move-VM -Destination $FirstHost -RunAsync
Write-Host "Moving vCenter to $FirstHost"

Ensure the vCenter is on the first host
While ((Get-VM -Name 'VCSA').VMHost.Name -ne $FirstHost.Name) {
 # Wait
 Start-Sleep 1
 Write-Host "." -NoNewline
}
Write-Host ""
Write-Host "vCenter has moved to $FirstHost"

Use Get-VsanView to determine if there are any objects that have issues.
$VsHlth = Get-VsanView -Id VsanVcClusterHealthSystem-vsan-cluster-health-system
$CluMoRef = $Cluster.ExtensionData.MoRef
$Test = ‘objectHealth’
$View = ‘defaultView’
$ObjHlth =
$VsHlth.VsanQueryVcClusterHealthSummary($CluMoRef,$null,$null,$null,$test,$null,$view)

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 69

Get a sum of all of the non-healthy objects
Allow the administrator time to resolve objects that aren't healthy
While (($ObjHlth.ObjectHealth.ObjectHealthDetail |Where-Object {$_.Health -ne
"healthy"} | Measure-Object -Property NumObjects -sum).sum -gt "0") {
 # Wait 10 minutes
 Start-Sleep 600
}
Write-Host "All vSAN Objects are healthy, proceeding"

Retrieve a list of all vSAN Hosts for the cluster
$HostList = $Cluster | Get-VMHost | Sort-Object Name

Shutdown vCenter
Get-VM -Name “VCSA” | Stop-VMGuest -Confirm:$false

Disconnect from vCenter
Disconnect-VIServer -Server $Vcenter -Confirm:$false

Set our vSAN host credentials
$User = "root"
$Pass = "VMware1!"

Connect to the first host (where vCenter is running)
Connect-VIServer -Server $FirstHost.Name -user $User -password $Pass
Check to make certain vCenter is completely powered down
While ((Get-VM -Name 'VCSA').PowerState -ne 'PoweredOff') {
 # Wait
 Start-Sleep 5
 Write-Host "." -NoNewline
}
Write-Host ""
Write-Host "vCenter is now offline"

Disconnect from the 1st Server
Disconnect-VIServer -Server $FirstHost.Name -Confirm:$false

Loop through each of the hosts in $HostList
Foreach ($VMHost in $HostList.Name) {

 # Connect directly to the current host
 Connect-VIServer -Server $VMHost -user $User -password $Pass

 # Put the current host into maintenance mode with No Action for vSAN data
 Set-VMHost -Server $VMHost -State Maintenance -VsanDataMigrationMode
"NoDataMigration"

 # Wait for the host to enter maintenance mode
 While ((Get-VMHost -Server $VMHost -Name $VMHost).ConnectionState -ne
"Maintenance") {
 Start-Sleep 1
 }

 # When the host has entered maintenance mode, power the host off
 Stop-VMHost -Server $VMHost -Confirm:$false -RunAsync

 # Disconnect from the host
 Disconnect-VIServer -Server $VMHost -Confirm:$false
}

When all hosts are ready to be powered on, they will need to be taken
out of Maintenance Mode. When they have all been taken out of
Maintenance Mode, vCenter can be powered on:

Set ESXi Credentials
$User = "root"
$Pass = "VMware1!"

Manually create our host list

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 70

$HostList =
"sc1.scdemo.local","sc2.scdemo.local","sc3.scdemo.local","sc4.scdemo.local","sc5.scdemo.local","sc6.scdemo.local"

Enumerate each host in the list
Foreach ($VMHost in $HostList) {
 # Connect to the host
 Connect-VIServer -Server $VMHost -user $User -password $Pass
 # Take the host out of maintenance mode
 Set-VMhost $VMHost -Server $VMHost -State Connected
 # Disconnect from the host
 Disconnect-VIServer -Server $VMHost -Confirm:$false
}

Reconned to the 1st host (where vCenter is)
Connect-VIServer -Server "sc1.scdemo.local" -user root -password VMware1!
Wait to be certain the host isn’t in Maintenance Mode
While ((Get-VMHost -Name "sc1.scdemo.local").ConnectionState -eq "Maintenance") {
 Start-Sleep 1
 Write-Host "." -NoNewline
}
Write-Host ""
Start the vCenter VM
Get-VM -Name "VCSA" -Server "sc1.scdemo.local" | Start-VM
Disconnect from the first host.
Disconnect-VIServer -Server "sc1.scdemo.local" -Confirm:$false

Removing Disk Groups from Hosts no longer in a vSAN Cluster
Removing hosts from a vSAN cluster is not a difficult process, but it is
important to remember to remove the disk groups from the host
before removing it from the cluster.

In the situation where a host has been removed from a vSAN cluster,
and one or more disk groups have not been removed, administrators
typically remove residual disk groups from the ESXi command line
using the ESXCLI command “esxcli vsan storage remove”.

This requires ssh being enabled for console access, or using the
vSphere CLI tool for Windows or Linux to execute the command to
remove the disk group’s devices.

It can be hard to diagnose when disk groups still exist, as they are not
shown in the vSphere Client and are not shown in PowerCLI when using
“Get-VsanDiskGroup -VMHost ‘hostname’”. They are shown when
using “esxcli vsan storage list” from an ESXi shell or using the vSphere
CLI.

With esxcli properly showing that the disk group exists on the host, the
Get-EsxCli cmdlet can also be used to see if any disk groups exist on a
host:

Connect to the esxcli instance on the host
$EsxCli = Get-EsxCli -VMHost “sc9.scdemo.local” -V2

Get the vSAN disk group devices
$DiskGroupDevices = $EsxCli.vsan.storage.list.invoke()

Count only the devices that are being used as cache
$DiskGroupCount = ($DiskGroupDevices | Where-Object {$_.IsCapacityTier -ne
$true}).Count

Report any disk groups
If ($DiskGroupCount -gt 0) {
 Write-Host "Disk Group(s):"$DiskGroupCount

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 71

} else {
 Write-Host "No Disk Groups on the host"
}

If there are disk groups, Get-EsxCli can be used to remove the disk
groups without having to use SSH or the vSphere CLI:

Connect to the esxcli instance on the host
$EsxCli = Get-EsxCli -VMHost “sc9.scdemo.local” -V2

Retrieve the disk group devices
$DiskGroupDevices = $EsxCli.vsan.storage.list.invoke()

Enumerate all of the disk group devices
ForEach ($DiskGroupDevice in $DiskGroupDevices) {

 # Since capacity devices cannot be part of a disk group without a cache device
 # If the device is cache device, then remove it to remove the disk group
 If ($DiskGroupDevice.IsCapacityTier -ne $true) {

 # Notify that the cache device will be removed
 Write-Host "Removing Cache Device:" $DiskGroupDevice.Device

 # Set the device as an argument for removal
 $Args = $esxcli.vsan.storage.remove.CreateArgs()
 $Args.ssd = $DiskGroupDevice.Device

 # Remove the cache device, removing the disk group
 $EsxCli.vsan.storage.remove.Invoke($Args)
 }
}

Moving VMs off of a vSAN Host without DRS
vSAN licensing is separate from vSphere licensing. It is common to see
vSAN used with versions of vSphere that do not include vSphere DRS
as a service on the vSAN Cluster.

Here is an example script that will find the VM’s on a vSphere host,
move them to another host, and then put the host in Maintenance
Mode:

Retrieve the cluster object
$Cluster = Get-Cluster -Name "vSAN"

Retrieve any connected hosts in the cluster
$VMHosts = $Cluster | Get-VMHost | Where-Object {$_.State -eq "Connected"}

Host to be put in Maintenance Mode
$MMHost = Get-VMHost -Name "sc1.scdemo.local"

vMotion all of the VM’s from the current host to random partners in the cluster
$VMS = Get-VMHost $MMHost | Get-VM
Foreach ($VM in $VMS) {
 $DestHost = $VMHosts | Get-Random
 Write-Output "Moving VM $VM to $DestHost"
 Move-VM -VM $vm -Destination $dsthost -Confirm:$false | Out-Null
}

Set-VMHost -VMHost $MMhost -State "Maintenance" -VsanDataMigrationMode
"EnsureAccessibility" -Confirm:$false

This example was taken from Damian Karlson’s post here:

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 72

https://damiankarlson.com/2010/10/13/cluster-evacuation-reboot-
without-drs-powercli/

vSAN Storage Policies
vSAN Storage Policies are used to determine data placement and
availability of objects on a vSAN datastore.

Storage Policies, while used by vSAN objects, are actually part of the
Storage Policy Based Management framework. There are dedicated
PowerCLI cmdlets that allow for retrieving the SPBM supported
features of a datastore, retrieving and setting the current policy for a
given vSAN object, and more.

Storage Polices are comprised of rules that are applied to VM or its
components at the host or datastore layer. This section is going to
focus specifically on Storage Polices as they relate to vSAN datastores.

Creating new vSAN Storage Polices
When vSAN is configured on a vSphere cluster, a default Storage
Policy is applied to all objects on a vSAN datastore.

Different workloads can often require different storage policies, or it
could be desirable to have a different storage policy. It really depends
on the workload, or the desire of the administrator.

To create a Storage Policy, it is important to understand the makeup of
a Storage Policy.

A Storage Policy is going to require a couple obvious properties, like
name and description, but will also require one or more rules, or array
of rules, called a ruleset.

Common Rules apply to the VMware API for I/O Filtering (VAIO)
namespace. A couple examples of these include VM Encryption and
Storage I/O Control. We’re not going to focus on Common Rules, but
rather AnyOfRulesets as they pertain to vSAN.

When creating a vSAN Storage Policy, different vSAN Rules are
selected. The default vSAN Storage Policy is created with the following
rules:

1. Primary Failures To Tolerate = 1
2. Failure Protection Method = Mirroring

To create this policy in PowerCLI, the New-SpbmStoragePolicy cmdlet
is used:

PS /> New-SpbmStoragePolicy -Name "RAID1 Mirroring" -Description "Mirroring Policy" -
AnyOfRuleSets (New-SpbmRuleSet(New-SpbmRule -Capability (Get-SpbmCapability -Name
"VSAN.hostFailuresToTolerate") -Value 1),
(New-SpbmRule -Capability (Get-SpbmCapability -Name "VSAN.replicaPreference") -Value
"RAID-1 (Mirroring) - Performance"))

Name Description Rule Sets
Common Rules
---- ----------- ---------

RAID1 Mirroring Mirroring Policy
{(VSAN.hostFailuresToTolera... {}

https://damiankarlson.com/2010/10/13/cluster-evacuation-reboot-without-drs-powercli/
https://damiankarlson.com/2010/10/13/cluster-evacuation-reboot-without-drs-powercli/

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 73

That is a bit lengthy and difficult to follow, so let’s break it down a bit.
To do that, let’s first set our vSAN rules to their own variables:

PS /> Get-SpbmCapability -Name "VSAN*"

Name ValueType AllowedValue
---- --------- ------------
VSAN.cacheReservation System.Int32 0 .. 1000000
VSAN.checksumDisabled System.Boolean True .. False
VSAN.forceProvisioning System.Boolean True .. False
VSAN.hostFailuresToTolerate System.Int32 0 .. 3
VSAN.iopsLimit System.Int32 0 .. 2147483647
VSAN.locality System.String {None, Preferred Fault Domain, Second...
VSAN.proportionalCapacity System.Int32 0 .. 100
VSAN.replicaPreference System.String {RAID-1 (Mirroring) - Performance, RA...
VSAN.stripeWidth System.Int32 1 .. 12
VSAN.subFailuresToTolerate System.Int32 0 .. 3

Now let’s assign each of these capability objects to their own readable
variable, where they can more easily be reused:

PS /> $VsanPFTT = Get-SpbmCapability -Name "VSAN.hostFailuresToTolerate"
$VsanFTM = Get-SpbmCapability -Name "VSAN.replicaPreference"
$VsanSFTT = Get-SpbmCapability -Name "VSAN.subFailuresToTolerate"
$VsanOSR = Get-SpbmCapability -Name "VSAN.proportionalCapacity"
$VsanCacheRes = Get-SpbmCapability -Name "VSAN.cacheReservation"
$VsanCheckSumOff = Get-SpbmCapability -Name "VSAN.checksumDisabled"
$VsanIopsLimit = Get-SpbmCapability -Name "VSAN.iopslimit"
$VsanLocality = Get-SpbmCapability -Name "VSAN.locality"
$VsanStripeWidth = Get-SpbmCapability -Name "VSAN.stripeWidth"
$VsanForceProvision = Get-SpbmCapability -Name "VSAN.forceProvisioning"

$FTM = Get-SpbmCapability -Name "VSAN.replicaPreference" | Select-Object AllowedValue
$Locality = Get-SpbmCapability -Name "VSAN.Locality" | Select-Object AllowedValue

Notice that the possible values for Failure Tolerance Method (FTM) are
being placed into the $FTM variable. These are text strings that could
be misspelled, and it easier to add them to an array, simply calling the
array item. The same is done above for Locality.

Now that those variables are setup, the above creation of a Mirroring
policy can be followed more easily. *Backticks tell PowerShell to continue the
next line as it is part of the same instruction.

New Mirroring Policy
New-SpbmStoragePolicy -Name "RAID1 Mirroring" -Description "Mirroring Policy" `
 -AnyOfRuleSets (New-SpbmRuleSet `
 (New-SpbmRule -Capability $VsanPFTT -Value 1), `
 (New-SpbmRule -Capability $VsanFTM -Value $FTM.AllowedValue[0]) `
)

Creating a RAID5 policy is easy as well:

New RAID5 Policy
New-SpbmStoragePolicy -Name "RAID5" -Description "RAID5 Erasure Coding" `
 -AnyOfRuleSets (New-SpbmRuleSet `
 (New-SpbmRule -Capability $VsanPFTT -Value 1), `
 (New-SpbmRule -Capability $VsanFTM -Value $FTM.AllowedValue[1]) `
)

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 74

And creating a RAID6 policy:

New RAID6 Policy
New-SpbmStoragePolicy -Name "RAID5" -Description "RAID6 Erasure Coding" `
 -AnyOfRuleSets (New-SpbmRuleSet `
 (New-SpbmRule -Capability $VsanPFTT -Value 2), `
 (New-SpbmRule -Capability $VsanFTM -Value $FTM.AllowedValue[1]) `
)

So far, the basic rules have been addressed. But what if an
administrator wants to make a vSAN policy that has the following
rules?

• PFTT=1

• FTM=Mirroring

• Object Space Reservation = 75%

• IOPS Limit = 5000
Expanding the above examples, we can add OSR and IOPS limits.
Consider though that OSR & IOPS limits are Integer values.

New Custom Policy
New-SpbmStoragePolicy -Name "Mirrored-75-SpaceReserved-5K-Limit" `
 -Description "Mirroring with 75% Space Reservation & 5K IOPS" `
 -AnyOfRuleSets (New-SpbmRuleSet `
 (New-SpbmRule -Capability $VsanPFTT -Value 1), `
 (New-SpbmRule -Capability $VsanFTM -Value $FTM.AllowedValue[0]), `
 (New-SpbmRule -Capability $VsanOSR -Value ([int]‘75’)), `
 (New-SpbmRule -Capability $VsanIopsLimit -Value ([int]‘5000’))
)

A script that could create several policies at once would look
something like this:

Create vSAN Storage Policy Variables
$VsanPFTT = Get-SpbmCapability -Name "VSAN.hostFailuresToTolerate"
$VsanFTM = Get-SpbmCapability -Name "VSAN.replicaPreference"
$VsanSFTT = Get-SpbmCapability -Name "VSAN.subFailuresToTolerate"
$VsanOSR = Get-SpbmCapability -Name "VSAN.proportionalCapacity"
$VsanCacheRes = Get-SpbmCapability -Name "VSAN.cacheReservation"
$VsanCheckSumOff = Get-SpbmCapability -Name "VSAN.checksumDisabled"
$VsanIopsLimit = Get-SpbmCapability -Name "VSAN.iopslimit"
$VsanLocality = Get-SpbmCapability -Name "VSAN.locality"
$VsanStripeWidth = Get-SpbmCapability -Name "VSAN.stripeWidth"
$VsanForceProvision = Get-SpbmCapability -Name "VSAN.forceProvisioning"

$FTM = Get-SpbmCapability -Name "VSAN.replicaPreference" | Select-Object AllowedValue
$Locality = Get-SpbmCapability -Name "VSAN.Locality" | Select-Object AllowedValue

Create policies for vSAN
Write-Host “Creating Policies for vSAN”
Write-Host “---------------------------------”

New RAID1 Mirroring Policy
Write-Host “Creating a RAID1 Mirroring Policy”
New-SpbmStoragePolicy -Name "RAID1 Mirroring" -Description "Mirroring Policy" `
 -AnyOfRuleSets (New-SpbmRuleSet `
 (New-SpbmRule -Capability $VsanPFTT -Value 1), `
 (New-SpbmRule -Capability $VsanFTM -Value $FTM.AllowedValue[0]) `
)

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 75

New RAID5 Policy
Write-Host “Creating a RAID5 Policy”
New-SpbmStoragePolicy -Name "RAID5" -Description "RAID5 Erasure Coding" `
 -AnyOfRuleSets (New-SpbmRuleSet `
 (New-SpbmRule -Capability $VsanPFTT -Value 1), `
 (New-SpbmRule -Capability $VsanFTM -Value $FTM.AllowedValue[1]) `
)

New RAID6 Policy
Write-Host “Creating a RAID5 Policy”
New-SpbmStoragePolicy -Name "RAID5" -Description "RAID5 Erasure Coding" `
 -AnyOfRuleSets (New-SpbmRuleSet `
 (New-SpbmRule -Capability $VsanPFTT -Value 2), `
 (New-SpbmRule -Capability $VsanFTM -Value $FTM.AllowedValue[1]) `
)

New Custom Policy
Write-Host “Creating a Custom Policy”
New-SpbmStoragePolicy -Name "Mirrored-75-SpaceReserved-5K-Limit" `
 -Description "Mirroring with 75% Space Reservation & 5K IOPS" `
 -AnyOfRuleSets (New-SpbmRuleSet `
 (New-SpbmRule -Capability $VsanPFTT -Value 1), `
 (New-SpbmRule -Capability $VsanFTM -Value $FTM.AllowedValue[0]), `
 (New-SpbmRule -Capability $VsanOSR -Value ([int]‘75’)), `
 (New-SpbmRule -Capability $VsanIopsLimit -Value ([int]‘5000’))
)

Backing up vSAN Storage Policies
PowerCLI can make the process of creating Storage Policies relatively
easy.

For environments that have tens or hundreds of Storage Policies, it is
as important to be able to back these policies up.

The Export-SpbmStoragePolicy cmdlet can be used to export Storage
Policies to a specific path on the host executing the cmdlet. The
location (FilePath) and the Storage Policy Object are required.

Backing up the RAID1 Mirroring Storage Policy above:

Backup RAID1 Mirroring Policy

Put the Policy Object into $Policy
$Policy = Get-SpbmStoragePolicy -Name “RAID1 Mirroring”

Create a path for the Policy
$FilePath = “/Users/Admin/SPBM/”+$Policy.Name+”.xml”
Remove any spaces in the path
$FilePath = $FilePath -Replace (‘ ‘)

Export (backup) the policy
Export-SpbmStoragePolicy -StoragePolicy $Policy -FilePath -Path

To back up all the Storage Policies on a vCenter Server, it is only
required to enumerate all of the policies and export each of them:

Back up all storage policies

Get all of the Storage Policies
$StoragePolicies = Get-SpbmStoragePolicy

Loop through all of the Storage Policies
Foreach ($Policy in $StoragePolicies) {

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 76

 # Create a path for the current Policy
 $FilePath = "/Users/Admin/SPBM/"+$Policy.Name+".xml"
 # Remove any spaces from the path
 $FilePath = $FilePath -Replace (' ')
 # Export (backup) the policy
 Export-SpbmStoragePolicy -StoragePolicy $Policy -FilePath $FilePath
}

Restoring vSAN Storage Policies
Just as important to backing up vSAN Storage Policies, is restoring
those policies if necessary.

Rather than using the Export-SpbmStoragePolicy cmdlet, we’ll use the
Import-SpbmStoragePolicy cmdlet instead.

Recover the RAID 1 Mirroring Policy

Get the RAID1 Policy XML file
$PolicyFile = Get-Item “/Users/Admin/SPBM/RAID1.xml”

Import the policy
Import-SpbmStoragePolicy -Name “RAID1” -Description “RAID1” -FilePath $PolicyFile

Having to manually enter the Name & Description values make this a
little difficult to scale.

Reading the contents of the XML and automatically placing this
information in these fields would allow for only the file name and path
to be passed:

Recover the RAID 1 Mirroring Policy

Get the RAID1 Policy XML file
$PolicyFile = Get-Item “/Users/Admin/SPBM/RAID1.xml”

Read the contents of the policy file to set variables
$PolicyFileContents = [xml](Get-Content $PolicyFile)

Get the Policy’s name & description
$PolicyName = $PolicyFileContents.PbmCapabilityProfile.Name.’#text’
$PolicyDesc = $PolicyFileContents.PbmCapabilityProfile.Description.’#text’

Import the policy
Import-SpbmStoragePolicy -Name $PolicyName -Description $PolicyDesc -FilePath
$PolicyFile

Pretty easy! Import all the policy xml files that reside in a single
directory easily as well:

Recover the Policies in /Users/Admin/SPBM/
$PolicyFiles = Get-ChildItem “/Users/Admin/SPBM/” -Filter *.xml

Enumerate each policy file found
Foreach ($PolicyFile in $PolicyFiles) {

 # Get the Policy XML file path
 $PolicyFilePath = $PolicyFile.FullName

 # Read the contents of the policy file to set variables
 $PolicyFileContents = [xml](Get-Content $PolicyFilePath)

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 77

 # Get the Policy’s name & description
 $PolicyName = $PolicyFileContents.PbmCapabilityProfile.Name.’#text’
 $PolicyDesc = $PolicyFileContents.PbmCapabilityProfile.Description.’#text’

 # Import the policy
 Import-SpbmStoragePolicy -Name $PolicyName -Description $PolicyDesc -FilePath
$PolicyFile
}

With policies recovered, they can be applied to vSAN objects.

Applying vSAN Storage Policies to a VM or its Drives
Whether Storage Polices are newly created, recently restored, or
already existing in a vCenter server, they can then be used for virtual
machines and their drives.

Applying a Storage Policy to VM on vSAN can be performed using the
Set-SpbmEntityConfiguration cmdlet.

Get the working SPBM Policy
$Policy = Get-SpbmStoragePolicy -Name “RAID5”

Get the VM to apply the policy to
$VM = $Cluster| Get-VM -Name “APP1”

Get the current SPBM config and replace the policy assigned to it
Set-SpbmEntityConfiguration -Configuration (Get-SpbmEntityConfiguration $VM) -
StoragePolicy $Policy

This applies the Storage Policy to the VM’s Namespace, not the hard
disks that the VM contains. In vSAN 6.7, where the Swap file inherits
the Storage Policy of the Namespace, the Storage Policy will be applied
to the Swap file as well.

To apply the Storage Policy to the VM and its hard disks, we’ll have to
retrieve the disks attached to the VM and apply the policy to each of
them.

Get the working SPBM Policy
$Policy = Get-SpbmStoragePolicy -Name “RAID5”

Get the VM to apply the policy to
$VM = $Cluster| Get-VM -Name “APP1”

Get the current SPBM configuration & replace the policy assigned
Set-SpbmEntityConfiguration -Configuration (Get-SpbmEntityConfiguration $VM) -
StoragePolicy $Policy

Get the current SPBM configuration for each hard disk & replace the policy assigned
Set-SpbmEntityConfiguration -Configuration (Get-SpbmEntityConfiguration -HardDisk (Get-
HardDisk -VM $VM)) -StoragePolicy $Policy

But what if we only want to apply a Storage Policy to a single virtual
disk that belongs to the VM? That is easy as well:

Get the working SPBM Policy
$Policy = Get-SpbmStoragePolicy -Name “RAID1”

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 78

Get the VM to apply the policy to
$VM = $CLUSTER | Get-VM -Name “SQL1”

Get the VM’s Drive that the policy will be assigned to (say one that is 60GB)
$HD = $Cluster | Get-HardDisk -VM $VM | Where-Object {$_.CapacityGB -eq “60”}

Get the current SPBM config and replace the policy assigned to it
Set-SpbmEntityConfiguration -Configuration (Get-SpbmEntityConfiguration $HD) -
StoragePolicy $Policy

What about a situation where we want to apply a policy to multiple
VM’s simultaneously?

Get the working SPBM Policy
$Policy = Get-SpbmStoragePolicy -Name “RAID5”

Get the VM’s the policy is going to be applied to
$AppVMs = $Cluster | Get-VM | Where-Object {$_.Name -like “APP*”}

Get the each AppVM SPBM config & replace the policy assigned
Set-SpbmEntityConfiguration -Configuration (Get-SpbmEntityConfiguration | $AppVMs) -
StoragePolicy $Policy

Get the current SPBM configuration for each vmdk & replace the policy assigned
Set-SpbmEntityConfiguration -Configuration (Get-SpbmEntityConfiguration -HardDisk (Get-
HardDisk -VM $AppVMs)) -StoragePolicy $Policy

This iteration of the script will get a list of VMs, change the Storage
Policy assigned to each of the VM’s & Namespaces, and then do the
same for each hard disk.

This isn’t the “cleanest” way of doing this, as it is probably more
desirable to configure a VM, its Namespace, and then its disks before
proceeding to the next VM.

To do that, a Foreach look is a better approach.

Get the working Cluster
$Cluster = Get-Cluster -Name "vSAN"

Get the working SPBM Policy
$Policy = Get-SpbmStoragePolicy -Name “RAID5”

Get the VM to apply the policy to
$AppVMs = $Cluster = Get-VM

Loop through the different VMs
Foreach ($VM in $AppVMs) {
 # Display which VM we're applying the Storage Policy to
 Write-Host "Applying $Policy to $VM"

 # Get the current SPBM configuration & replace the policy assigned
 Set-SpbmEntityConfiguration -Configuration (Get-SpbmEntityConfiguration $VM) -
StoragePolicy $Policy

 # Get the current SPBM configuration for each vmdk & replace the policy assigned
 Set-SpbmEntityConfiguration -Configuration (Get-SpbmEntityConfiguration -HardDisk
(Get-HardDisk -VM $VM)) -StoragePolicy $Policy
}

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 79

Remember that applying a policy to a VM could potential require a full
copy of the VM, depending on the policy rules.

Applying a policy to multiple VMs simultaneously could potentially
require a significant amount additional capacity even if only
temporarily.

Consider the situation where a 4-node cluster has 600 VMs, where
each of those VM’s has an Object Space Reservation rule, and the
cluster is at 80% capacity utilization. If an administrator were to apply a
new policy (or even change an existing policy), and that policy required
a full copy to be made (like moving from Mirroring to RAID5), the
cluster would run out of capacity before being able to change the
policy on each VM.

It is far better to set Storage Policy configurations in batches of VMs to
prevent this issue.

Get the working Cluster
$Cluster = Get-Cluster -Name "vSAN"

Get the working SPBM Policy
$Policy = Get-SpbmStoragePolicy -Name “RAID5”

Get the VM’s the policy is going to be applied to
$AppVMs = $Cluster | Get-VM

Group VMs into groups of 10
$Counter = [pscustomobject] @{ Value = 0}
$VmGroups = $AppVMs | Group-Object -Property { [math]::Floor($Counter.Value++/10)}

Loop through the number of groups we have
For ($i=0; $i -le $VmGroups.Count-1; $i++) {
 # Write the Current working Group
 Write-Host "Group $i"

 # Enumerate each VM in the current Group
 Foreach ($GuestVM in $VmGroups[$i].Group) {
 # Apply the policy to the current VM in the Group
 Write-Host "Applying $Policy for $GuestVM"
 # Set the Policy for the VM Namespace
 Set-SpbmEntityConfiguration -Configuration (Get-SpbmEntityConfiguration -VM
$GuestVM) -StoragePolicy $Policy
 # Set the Policy for any Hard Disks
 Set-SpbmEntityConfiguration -Configuration (Get-SpbmEntityConfiguration -HardDisk
(Get-HardDisk -VM $GuestVM)) -StoragePolicy $Policy
 }
 While ((Get-VsanResyncingComponent -Cluster $Cluster)) {
 Write-Host "." -ForegroundColor "DarkYellow" -NoNewline
 }
}

*Many thanks to Timo Sugliani for bringing attention to an issue with the
logic in this section in releases 1.0-1.2 of this document.

Changing the Storage Policy for All Objects with a Given Policy
Setting Storage Policies for vSAN Objects that meet a naming scheme
is one thing. Updating Storage Policies for vSAN Objects with a given
Storage Policy is another.

In the previous section we covered setting a Storage Policy variable,
and applying that policy to a given entity, such as a VM or hard disk.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 80

Get the working SPBM Policy
$Policy = Get-SpbmStoragePolicy -Name “RAID5”

Get the VM to apply the policy to
$VM = $Cluster| Get-VM -Name “APP1”

Get the current SPBM config and replace the policy assigned to it
Set-SpbmEntityConfiguration -Configuration (Get-SpbmEntityConfiguration $VM) -
StoragePolicy $Policy

But what if we have a policy that no longer has the ability to be
compliant on a vSAN datastore?

PS /> Get-SpbmEntityConfiguration

Entity Storage Policy Status Time Of Check
------ -------------- ------ -------------
Hard disk 1 RAID5 nonCompliant 2/7/19 12:36:16 AM
Hard disk 3 RAID5 nonCompliant 2/7/19 12:36:16 AM
SC1 RAID5 nonCompliant 2/7/19 12:36:16 AM
SC6 RAID5 nonCompliant 2/7/19 12:36:16 AM
WITNESS2 RAID5 nonCompliant 2/7/19 12:36:16 AM
Hard disk 1 RAID5 nonCompliant 2/7/19 12:36:16 AM
H5CLIENT RAID5 nonCompliant 2/7/19 12:36:16 AM
SC1 RAID5 nonCompliant 2/7/19 12:36:16 AM
SC5 RAID5 nonCompliant 2/7/19 12:36:16 AM
Hard disk 3 RAID5 nonCompliant 2/7/19 12:36:16 AM
SC3 RAID5 nonCompliant 2/7/19 12:36:16 AM
vRouter0 RAID5 nonCompliant 2/7/19 12:36:16 AM
SC4 RAID5 nonCompliant 2/7/19 12:36:16 AM
Hard disk 2 RAID5 nonCompliant 2/7/19 12:36:16 AM

The output above is the result of permanently removing the fourth host
of a four host vSAN Cluster. Remember that a RAID5 (Erasure Coding)
Storage Policy requires a minimum of four nodes.

That’s correct, while working on something else, the author removed a
host, and completely forgot that a RAID5 Storage Policy was in place.

To recover from this using the UI, every non-compliant object would
have to have a new Storage Policy assigned.

There is no way to make a vSAN Object with a RAID5 Storage Policy
compliant with only three nodes.

If the cluster has hundreds, or thousands of objects, this could be very
time consuming.

Using the previous batch script to apply a Storage Policy, some
modifications can be made. For starters, let’s only retrieve the entities
that had the old policy.

Get the working Cluster
$Cluster = Get-Cluster -Name "vSAN"

Get the old SPBM Policy
$OldPolicy = Get-SpbmStoragePolicy -Name "RAID5"

Get the new SPBM Policy
$NewPolicy = Get-SpbmStoragePolicy -Name “vSAN Default Storage Policy”

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 81

Get the vSAN objects with the now-defunct policy so we can apply the new policy
$VsanObjectsOldPolicy = Get-SpbmEntityConfiguration -StoragePolicy $OldPolicy

With $VsanObjectsOldPolicy containing the entities that have the
RAID5 Storage Policy (now defunct and noncompliant), we can set a
new, the default vSAN Policy in this case, Storage Policy to them, so
they can become compliant again.

Group VMs into groups of 3
$Counter = [pscustomobject] @{ Value = 0}
$ObjectGroups = $VsanObjectsOldPolicy.Entity | Group-Object -Property
{[math]::Floor($Counter.Value++/3)}

Loop through the number of groups we have
For ($i=0; $i -le $ObjectGroups.Count-1; $i++) {
 # Write the Current working Group
 Write-Host "Group $i"

 # Enumerate each Entity in the current Group
 Foreach ($OldObject in $ObjectGroups[$i].Group) {
 # Apply the policy to the current Entity in the Group
 Write-Host "Updating Storage Policy for $OldObject"

 Set-SpbmEntityConfiguration -Configuration $OldObject -StoragePolicy $NewPolicy
 }
 Write-Host "Waiting for any vSAN Object Resyncs to complete" -ForegroundColor
"DarkYellow"
 While ((Get-VsanResyncingComponent -Cluster $Cluster)) {
 Write-Host "." -ForegroundColor "DarkYellow" -NoNewline
 }
 Write-Host "* " -ForegroundColor "Green"
 Write-Host "No vSAN Resyncs Pending" -ForegroundColor "Green"
}

Putting both of these together, we see:

Get the working Cluster
$Cluster = Get-Cluster -Name "vSAN"

Get the old SPBM Policy
$OldPolicy = Get-SpbmStoragePolicy -Name "RAID5"

Get the new SPBM Policy
$NewPolicy = Get-SpbmStoragePolicy -Name “vSAN Default Storage Policy”

Get the vSAN objects with the now-defunct policy so we can apply the new policy
$VsanObjectsOldPolicy = Get-SpbmEntityConfiguration -StoragePolicy $OldPolicy

Group VMs into groups of 3
$Counter = [pscustomobject] @{ Value = 0}
$ObjectGroups = $VsanObjectsOldPolicy.Entity | Group-Object -Property
{[math]::Floor($Counter.Value++/3)}

Loop through the number of groups we have
For ($i=0; $i -le $ObjectGroups.Count-1; $i++) {
 # Write the Current working Group
 Write-Host "Group $i"

 # Enumerate each Entity in the current Group
 Foreach ($OldObject in $ObjectGroups[$i].Group) {
 # Apply the policy to the current Entity in the Group
 Write-Host "Updating Storage Policy for $OldObject"

 Set-SpbmEntityConfiguration -Configuration $OldObject -StoragePolicy $NewPolicy
 }

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 82

 Write-Host "Waiting for any vSAN Object Resyncs to complete" -ForegroundColor
"DarkYellow"
 While ((Get-VsanResyncingComponent -Cluster $Cluster)) {
 Write-Host "." -ForegroundColor "DarkYellow" -NoNewline
 }
 Write-Host "* " -ForegroundColor "Green"
 Write-Host "No vSAN Resyncs Pending" -ForegroundColor "Green"
}

The resulting output looks something like this:

Group 0
Updating Storage Policy for SC5

TimeOfCheck : 2/7/19 1:18:50 AM
ComplianceStatus : compliant
Entity : SC5
StoragePolicy : vSAN Default Storage Policy
ReplicationGroup :
Name : SC5
Id : VirtualMachine-vm-215

Updating Storage Policy for SC1

TimeOfCheck : 2/7/19 1:18:54 AM
ComplianceStatus : compliant
Entity : SC1
StoragePolicy : vSAN Default Storage Policy
ReplicationGroup :
Name : SC1
Id : VirtualMachine-vm-212

Updating Storage Policy for Hard disk 1

TimeOfCheck : 2/7/19 1:18:57 AM
ComplianceStatus : nonCompliant
Entity : Hard disk 1
StoragePolicy : vSAN Default Storage Policy
ReplicationGroup :
Name : Hard disk 1
Id : VirtualMachine-vm-352/2000
...Group 1

Individually setting the Storage Policy on vSAN Objects is relatively
easy in the UI. Setting the policy for several, multiple, hundreds, or
even thousands of objects is a bit more challenging when performed
manually.

This is another example of how PowerCLI can be used to more
efficiently manage an environment at scale, preventing user error and
maintaining consistency.

vSAN Stretched Cluster Operations
With the introduction of Stretched Clusters to vSAN in version 6.1, it has
been even easier for customers to take advantage of Active-Active
availability across sites for vSAN workloads.

Stretched Cluster vSAN configurations behave a little bit differently
than traditional vSAN clusters in that they have two fault domains and
require a vSAN Witness Host.

A few of the nuances of Stretched Cluster configuration have been
covered in the Configuration Recipes section, such as how to set static

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 83

routes for vSAN VMkernel interfaces, as well how to configure Witness
Traffic Separation for configurations that support it.

Some operational tasks associated with vSAN Stretched Clusters that
are a bit different than traditional vSAN clusters. Some of the tasks
include patching, selecting the alternate site to be preferred, swapping
a vSAN Witness Host, or configuring virtual machines to reside on one
fault domain or the other.

Changing the “Preferred” Site
Fault domains in stretched vSAN cluster configurations are comprised
of a “Preferred” fault domain and a “Non-Preferred” fault domain.
Typically, one fault domain will be one site and the alternate fault
domain will the alternate site.

The preferred designation is directly related to how each site will
behave in the event of a site isolation. More information around the
preferred fault domain and vSAN Stretched Cluster failure scenarios
can be found on https://storagehub.vmware.com/ in the Stretched
Cluster guide.

The two different fault domains can have any name. The name does
not have to align with the current designation (preferred or not).

Sometimes a virtualization administrator may wish to select the
alternate site as the preferred. Cases where this may be desirable are
scenarios where a site is being taken offline for a given amount of time,
or possibly during an upgrade process.

The Get-VsanFaultDomain will return fault domain objects for use by
PowerCLI.

PS /> Get-VsanFaultDomain -Cluster $Cluster

Name Cluster
---- -------
Preferred vSAN
Secondary vSAN

Fault domains can be retrieved and stored in a variable using their
name:

PS /> $PreferredFd = Get-VsanFaultDomain -Cluster $Cluster -Name "Preferred"
PS /> $SecondaryFd = Get-VsanFaultDomain -Cluster $Cluster -Name "Secondary"

Also, consider that Stretched Cluster vSAN configurations only have
two fault domains, with one of them being designated as “Preferred.”

The “PreferredFaultDomain” property returned by the Get-
VsanClusterConfiguration cmdlet contains the name of the fault domain
with the Preferred designation.

Query all fault domains in a stretched cluster (remember there are 2),
and only retrieving the one that matches the name of the
.PreferredFaultDomain property, makes it easy to dynamically return
one of the two fault domains.

https://storagehub.vmware.com/

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 84

PS /> $PreferredFd = Get-VsanFaultDomain -Cluster $Cluster | Where-Object {$_.Name -eq
(Get-VsanClusterConfiguration -Cluster $Cluster).PreferredFaultdomain}
PS />

Performing the same query, but selecting only the fault domain that
does not contain the name of the fault domain, makes it easy to
dynamically return the alternate (or non-preferred) fault domain.

PS /> $SecondaryFd = Get-VsanFaultDomain -Cluster $Cluster | Where-Object {$_.Name -ne
(Get-VsanClusterConfiguration -Cluster $Cluster).PreferredFaultdomain}
PS />

With the Preferred fault domain and Secondary fault domain set to
variables, swapping the preferred fault domain from Preferred to
Secondary is accomplished with the Set-VsanClusterConfiguration
cmdlet.

PS /> Get-VsanClusterConfiguration -Cluster $Cluster | Set-VsanClusterConfiguration -
PreferredFaultDomain $SecondaryFd

After this is performed, $SeconaryFd becomes the “Preferred” fault
domain.

To change it back the $PreferredFD variable that was previously
created would have to be used to set the PreferredFaultDomain
parameter.

PS /> Get-VsanClusterConfiguration -Cluster $Cluster | Set-VsanClusterConfiguration -
PreferredFaultDomain $PreferredFd

Alternatively, if we simply wanted to toggle from whichever fault
domain is the current preferred fault domain, we could get a bit more
elaborate:

PS /> Get-VsanClusterConfiguration -Cluster $Cluster | Set-VsanClusterConfiguration -
PreferredFaultDomain (Get-VsanFaultDomain -Cluster $Cluster | Where-Object {$_.Name -ne
(Get-VsanClusterConfiguration -Cluster $Cluster).PreferredFaultdomain})

What exactly are we doing here?

• Retrive the Cluster configuration (Get-
VsanClusterConfiguration)

• Take the configuration and pipe it into the next set of steps’
• Retrieve the fault domain that isn’t currently the preferred
• Set that fault domain to the preferred

This logic simply toggles the currently non-preferred fault domain to
the preferred fault domain.

By dynamically picking fault domains there is no need to worry about
incorrectly specifying the different fault domains as they are assigned
to variables. Using those dynamically generated fault domain variables,

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 85

we could check against other logic and choose to (or not to) change
the preferred fault domain.

If we simply want to swap, regardless of which one is currently
preferred, that is easy as well.

Patching a vSAN Stretched Cluster
Patching any vSphere cluster is easily accomplished using Update
Manager. In the samples mentioned in the Patching section, an update
operation is executed against the entire cluster.

This will work for stretched vSAN clusters as well, but the general
guidance from VMware is to patch each fault domain separately in an
ordered fashion.

*Remember that Update Manager PowerCLI cmdlets are only available
in Windows using PowerShell, and not PowerShell Core. The next
pieces of code should be executed from a Windows system with
PowerShell and PowerCLI.

Update Manager does not distinguish which hosts are in which site as
vSAN fault domains do, so the examples collecting the vSAN fault
domains and putting them into a variable are of significant value here.

Rather that depending on Update Manager to handle the host selection
process, PowerCLI can be used to select hosts in an individual site for
updating. Once one site has been updated, the other site can be
updated. This will be followed by the vSAN Witness Host, which is
recommended to be updated last.

For the PreferredFD:

PS C:\> $PreferredFd = Get-VsanFaultDomain -Cluster $Cluster | Where-Object {$_.Name -
eq ((Get-VsanClusterConfiguration -Cluster $Cluster).PreferredFaultDomain)}

For the NonPreferredFD:

PS C:\> $NonPreferredFd = Get-VsanFaultDomain -Cluster $Cluster | Where-Object {$_.Name
-ne ((Get-VsanClusterConfiguration -Cluster $Cluster).PreferredFaultDomain)}

With fault domains designed, hosts in each can be updated. Just to
check our logic, let’s just enumerate the hosts in each fault domain.

PS C:\> $Cluster = Get-Cluster -Name "vSAN"
$ClusterConfiguration = Get-VsanClusterConfiguration -Cluster $Cluster
$PreferredFd = Get-VsanFaultDomain -Cluster $Cluster | Where-Object {$_.Name -eq
$ClusterConfiguration.PreferredFaultdomain}
$SecondaryFD = Get-VsanFaultDomain -Cluster $Cluster | Where-Object {$_.Name -ne
$ClusterConfiguration.PreferredFaultdomain}

Write-Host $PreferredFd
Foreach ($VMHost in ($PreferredFd | Get-VMHost)) {
 Write-Host $VMHost

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 86

}
Write-Host $SecondaryFD
Foreach ($VMHost in ($SecondaryFd | Get-VMHost)) {
 Write-Host $VMHost
}

Preferred
sc1.scdemo.local
sc3.scdemo.local
sc2.scdemo.local
Secondary
sc6.scdemo.local
sc5.scdemo.local
sc4.scdemo.local
PS C:\>

Rolling through each fault domain, we can put each host in
Maintenance Mode, update it with Update Manager, wait until it comes
back online, take it out of Maintenance Mode, and move to the next
host in the fault domain. When one fault domain (site) is complete, we
can move to the alternate site. *Assuming DRS is FullyAutomated

The process to update an individual host is basically:

• Check to see if the host is missing any patches
• If the host is missing patches, put the host in Maintenance

Mode
• Patch the host with any missing patches
• Take the host out of Maintenance Mode
•

A snippet to do this on a single host would look like this:
•

$TestHost = Get-VMHost -Name "sc10.scdemo.local"
Test-Compliance -Entity $TestHost

$NonCompBase = Get-Compliance -Entity $TestHost | Where-Object {$_.Status -ne
"Compliant"}

 Write-Host $TestHost "not compliant with baseline: " $NonCompBase.Baseline.Name
 Foreach ($NonComp in $NonCompBase.BaseLine) {
 Write-Host "Patching $TestHost with baseline:" $NonComp.Name
 $TestHost | Update-Entity -Baseline (Get-Baseline -Name $NonComp.Name) -
Confirm:$False}

Combining the snippets would look something like this:

Get the Cluster Object
$Cluster = Get-Cluster -Name "vSAN"
Get the vSAN Configuration
$ClusterConfiguration = Get-VsanClusterConfiguration -Cluster $Cluster
Get the Preferred Fault Domain
$PreferredFd = Get-VsanFaultDomain -Cluster $Cluster | Where-Object {$_.Name -eq
$ClusterConfiguration.PreferredFaultdomain}
Get the NonPreferred Fault Domain
$SecondaryFD = Get-VsanFaultDomain -Cluster $Cluster | Where-Object {$_.Name -ne
$ClusterConfiguration.PreferredFaultdomain}

Write that we’re working on the Preferred FD
Write-Host “Updating $PreferredFd”
Foreach ($VMHost in ($PreferredFd | Get-VMHost)) {
 # Check the patch compliance of the current host
 Test-Compliance -Entity $VMHost

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 87

 # Get a list of non-compliant baselines
 $NonCompBase = Get-Compliance -Entity $VMHost | Where-Object {$_.Status -ne
"Compliant"}

 # Notify that we’re not compliant with X baseline(s)
 Write-Host $VMHost "not compliant with baseline: " $NonCompBase.Baseline.Name

 # Enumerate each baseline we’re not compliant with and patch the host
 Foreach ($NonComp in $NonCompBase.BaseLine) {
 # Report which baseline is the host is being patched with
 Write-Host "Patching $TestHost with baseline:" $NonComp.Name
 $VMHost | Update-Entity -Baseline (Get-Baseline -Name $NonComp.Name) -
Confirm:$False
 }
}
Write-Host $SecondaryFD
Foreach ($VMHost in ($SecondaryFd | Get-VMHost)) {
 # Check the patch compliance of the current host
 Test-Compliance -Entity $VMHost
 # Get a list of non-compliant baselines
 $NonCompBase = Get-Compliance -Entity $VMHost | Where-Object {$_.Status -ne
"Compliant"}

 # Notify that we’re not compliant with X baseline(s)
 Write-Host $VMHost "not compliant with baseline: " $NonCompBase.Baseline.Name

 # Enumerate each baseline we’re not compliant with and patch the host
 Foreach ($NonComp in $NonCompBase.BaseLine) {
 # Report which baseline the host is being patched with
 Write-Host "Patching $TestHost with baseline:" $NonComp.Name
 $VMHost | Update-Entity -Baseline (Get-Baseline -Name $NonComp.Name) -
Confirm:$False
 }
}

•
When the hosts in the Preferred and Secondary fault domains
have been patched, the vSAN Witness Host will need to be
patched. To do that, we need to determine which host is the
vSAN Witness Host:

•

PS C:\> $WitnessHost = Get-VsanClusterConfiguration -Cluster $Cluster | Select-Object
WitnessHost

•
Quick PowerShell Tip. This can also be written this way:

•

PS C:\> $WitnessHost = (Get-VsanClusterConfiguration -Cluster $Cluster).WitnessHost

Patching the vSAN Witness Host would look like this:

Get the Cluster Object
$Cluster = Get-Cluster -Name "vSAN"
Get the vSAN Configuration
$ClusterConfiguration = Get-VsanClusterConfiguration -Cluster $Cluster
Get the vSAN Witness Host
$WitnessHost = $ClusterConfiguration.WitnessHost

Write that we’re patching the vSAN Witness Host
Write-Host “Updating $WitnessHost”

Check the patch compliance of the witness host
Test-Compliance -Entity $WitnessHost

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 88

Get a list of non-compliant baselines
$NonCompBase = Get-Compliance -Entity $WitnessHost | Where-Object {$_.Status -ne
"Compliant"}

Notify that we’re not compliant with X baseline(s)
Write-Host $WitnessHost "not compliant with baseline: " $NonCompBase.Baseline.Name

Enumerate each baseline we’re not compliant with and patch the host
Foreach ($NonComp in $NonCompBase.BaseLine) {
 # Report which baseline the vSAN Witness host is being patched with
 Write-Host "Patching $WitnessHost with baseline:" $NonComp.Name
 $WitnessHost | Update-Entity -Baseline (Get-Baseline -Name $NonComp.Name) -
Confirm:$False
 }
}

A working copy of this script can be found here:
https://github.com/jasemccarty/Vsan-
SC2N/blob/master/PatchStretchedCluster.ps1

Swapping the vSAN Witness Host
Sometimes a virtualization administrator managing a vSAN Stretched
Cluster or 2 Node Cluster will need to swap the vSAN Witness Host.

Scenarios where the vSAN Witness Host might need to be swapped,
include configuring a different vSAN Witness Host when the existing
vSAN Witness Host is no longer available, or it is desired to use an
alternate vSAN Witness Host.

Consider the situation where a vSAN Witness Host has been deleted,
corrupted, or can no longer be connected to. For the vSAN Stretched
Cluster to be made healthy again, it must have a new vSAN Witness
Host join the cluster.

In the vSAN UI, the Change Witness Host Wizard is used to select a
new vSAN Witness Host:

https://github.com/jasemccarty/Vsan-SC2N/blob/master/PatchStretchedCluster.ps1
https://github.com/jasemccarty/Vsan-SC2N/blob/master/PatchStretchedCluster.ps1

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 89

Once selected, the disks that will be used for the vSAN Witness Host’s
disk group are selected, and then the vSAN Witness Host is added to
the cluster.

The previous example showed that the Get-VsanClusterConfiguration
cmdlet will return the current vSAN Witness Host configuration.

• The Set-VsanClusterConfiguration cmdlet will let us set the
new vSAN Witness Host. First let’s put the host object into a
variable:

•

PS C:\> $NewWitness = Get-VMHost -Name “witness2.scdemo.local”

•
Remember from the New-VsanDiskGroup samples, a disk
group has to have a cache and a capacity device at a
minimum.

•
• The “Tiny” and “Normal” vSAN Witness Appliances have a

15GB and 350GB vmdk respectively assigned to SCSI(0:1) slot
for the use as a capacity device, and they both have a 10GB
vmdk assigned to the SCSI(0:2) slot for a cache device.

•

PS C:\> $WitnessCapacity = “mpx.vmhba1:C0:T1:L0”
PS C:\> $WitnessCache = “mpx.vmhba1:C0:T2:L0”

With vSAN Witness Host parameters, the Set-VsanClusterConfiguration
cmdlet can be used to swap the vSAN Witness Host:

PS C:\> Set-VsanClusterConfiguration -Configuration $Cluster -WitnessHost $NewWitness -
WitnessHostCacheDisk $WitnessCache -WitnessHostCapacityDisk $WitnessCapacity

Cluster VsanEnabled IsStretchedCluster Last HCL Updated
------- ----------- ------------------ ----------------
vSAN True True 1/31/19 10:32:00 AM

If the previous vSAN Witness Host has been absent for longer than the
CLOMD Repair Timer (typically 60 minutes) the vSAN objects will
automatically be repaired. In the case where the vSAN Witness Host
has been absent less than the CLOMD Repair Timer, the missing vSAN
Object Witness Components will be rebuilt automatically when the
CLOMD Repair Timer expires.

To force a “Repair Objects Immediately” operation so the vSAN Object
Witness Components are immediately recreated, a Get-VsanView call
will have to be made. The VsanHealthRepairClusterObjectsImmediately
method must be used from the Vsan Health System Managed Object.

PS C:\>$VCHS = Get-VsanView -Id "VsanVcClusterHealthSystem-vsan-cluster-health-system"
PS C:\>$VCHS.VsanHealthRepairClusterObjectsImmediate($Cluster.ExtensionData.MoRef,$null)

Calling the Repair Objects Immediately method will begin the process
to return the vSAN Objects to their Storage Policy Compliant state.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 90

An example of this script can be found here:
https://code.vmware.com/samples/1671

vSAN Encryption Operations
vSAN Encryption tasks that could potentially be performed over time
include shallow rekeying, deep rekeying, as well as change the current
Key Management Server.

Shallow Rekey
A shallow rekey operation for an encrypted vSAN cluster simply
requests a new Key Encryption Key (KEK) from the KMS server, which
is then used to re-encrypt the Data Encryption Key (DEK) for each
vSAN device.

The vSphere Client has a “Generate New Encryption Keys” option to
handle rekey operations.

Pressing “Generate” without selecting the “Also re-encrypt…”
checkbox, will perform a shallow rekey.

This operation was not originally available in PowerCLI, and Get-
VsanView had to be used to perform this task.

Get the Cluster
$Cluster = Get-Cluster -Name “vSANCluster”

Setup the VsanVcClusterConfigSystem variable
$VsanVcClusterConfig = Get-VsanView -Id "VsanVcClusterConfigSystem-vsan-cluster-config-
system"

If shallow set to $false, if deep set to $true
$Rekey = $false

Reduced Redundancy
$Redun = $false

Perform the Rekey Task
$VsanVcClusterConfig.VsanEncryptedClusterRekey_Task(
$Cluster.ExtensionData.MoRef,$Rekey,$Redun)

There is no requirement for Reduced Redundancy when performing a
Shallow Rekey, as no data is moved.

https://code.vmware.com/samples/1671

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 91

The Start-VsanEncryptionConfiguration cmdlet (introduced later) can
also accomplish this process:

Get the Cluster
$Cluster = Get-Cluster -Name “vSANCluster”

Perform the Rekey Task
Start-VsanEncryptionConfiguration -Cluster $Cluster -ShallowRekey -Confirm:$False

Changing the KMS Server
It could be desirable to change the KMS server that is being used for
vSAN Encryption. A typical scenario where an older KMS is being
decommissioned and a new one is one such case.

Get-VsanView ca be used to set the vSAN Configuration Spec and set
the vSAN Cluster to use the new KMS.

Set the VsanVcClusterConfigSystem View
$VsanVcClusterConfig = Get-VsanView -Id
"VsanVcClusterConfigSystem-vsan-cluster-config-system"

Setup the KMS Provider Id Specification
$KmsProviderIdSpec = New-Object VMware.Vim.KeyProviderId
$KmsProviderIdSpec.Id = $KmsClusterProfile.Name

Setup the Data Encryption Configuration Specification
$DataEncryptionConfigSpec = New-Object
VMware.Vsan.Views.VsanDataEncryptionConfig
Grab the Provider ID for the KMS from vCenter
$DataEncryptionConfig.KmsProviderId = (Get-KmsCluster -Name
"NEWKMS").ExtensionData.ClusterId
Set Encryption to True
$DataEncryptionConfigSpec.EncryptionEnabled = $true

Set the Reconfigure Specification to use the Data Encryption
Configuration Spec
$vsanReconfigSpec = New-Object VMware.Vsan.Views.VimVsanReconfigSpec
$vsanReconfigSpec.DataEncryptionConfig = $DataEncryptionConfigSpec

Execute the task of changing the KMS Cluster Profile Being Used
$VsanVcClusterConfig.VsanClusterReconfig(
$VsanCluster.ExtensionData.MoRef,$vsanReconfigSpec)

Just as the KMS value was set in configuring vSAN Encryption, this will
update the KMS to a different KMS.

The Start-VsanEncryptionConfiguration cmdlet can be used to change
the configuration to an alternate KMS as well. Get-KmsCluster is used to
retrieve the KMS Cluster object

Get the Cluster
$Cluster = Get-Cluster -Name “vSANCluster”

Get the KMS Cluster object
$KmsCluster = Get-KmsCluster -Name “KMS”

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 92

Set the new KMS Cluster to be used with the vSAN Cluster
Start-VsanEncryptionConfiguration -Cluster $Cluster -KmsCluster $KmsCluster
-Confirm:$false

Deep Rekey
A deep rekey operation for an encrypted vSAN cluster requests a new
Key Encryption Key (KEK) from the KMS server, which is then used to
re-encrypt the Data Encryption Key (DEK) for each vSAN device.

Once a new KEK is retrieved, the following tasks occur automatically:

• Data is evacuated off of each vSAN Disk Group

• The Disk Group is then removed.

• A new DEK is generated for each device

• The DEK is encrypted with the KEK

• The vSAN Disk Group is recreated

• Data is then moved back to the Disk Group if necessary.

In cases where vSAN has only 2 or 3 nodes, or in cases where there is
no way to maintain policy compliance, the Allow Reduced Redundancy
option is necessary for the process to complete successfully.

The vSphere Client “Generate New Encryption Keys” option, with the
“Also re-encrypt…” checkbox selected, will perform a Deep Rekey. The
Allow Reduced Redundancy option becomes available when “Also re-
encrypt…” is selected.

This operation was not natively available in PowerCLI initially, so we
had to use Get-VsanView again to perform this task.

Get the Cluster
$Cluster = Get-Cluster -Name “vSANCluster”

Setup the VsanVcClusterConfigSystem variable
$VsanVcClusterConfig = Get-VsanView -Id "VsanVcClusterConfigSystem-vsan-cluster-config-system"

If shallow set to $false, if deep set to $true

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 93

$Rekey = $true

Reduced Redundancy
$Redun = $true

Perform the Rekey Task
$VsanVcClusterConfig.VsanEncryptedClusterRekey_Task($Cluster.ExtensionData.MoRef,$Rekey,$Redun)

Reduced Redundancy may or may not be required when performing a
Deep Rekey.

The Start-VsanEncryptionConfiguration cmdlet (introduced later) can
also accomplish this process:

Get the Cluster
$Cluster = Get-Cluster -Name “vSANCluster”

Perform the Rekey Task
Start-VsanEncryptionConfiguration -Cluster $Cluster -DeepRekey -
AllowReducedRedundancy $true -Confirm:$false

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 94

Reporting Recipes
A few sample ‘Recipes’ are included in this document to detail the
process of how one would go about putting together PowerCLI scripts
for reporting common aspects of vSAN.

Important Note: The code samples included in this document are
not supported by VMware. The code included is only provided as
sample code for the purpose of demonstrating different tasks using
PowerCLI.

Disk Utilization
A common reporting ask for vSAN, is to be able to report on individual
disk, disk group, and individual host capacity utilization.

The Get-VsanDisk cmdlet provides information specific to each disk
that is part of a vSAN cluster.

Here is an example of some information returned by Get-VsanDisk:

PS /> Get-VsanDisk

CanonicalName DevicePath IsSsd
------------- ---------- -----
naa.55cd2e404c166444 /vmfs/devices/disks/naa.55cd2e404c166444 True
naa.55cd2e404c17ba30 /vmfs/devices/disks/naa.55cd2e404c17ba30 True
naa.55cd2e404c17b740 /vmfs/devices/disks/naa.55cd2e404c17b740 True
naa.55cd2e404c17b743 /vmfs/devices/disks/naa.55cd2e404c17b743 True
naa.55cd2e404c166446 /vmfs/devices/disks/naa.55cd2e404c166446 True
naa.55cd2e404c17ba2b /vmfs/devices/disks/naa.55cd2e404c17ba2b True
naa.55cd2e404c17b747 /vmfs/devices/disks/naa.55cd2e404c17b747 True
naa.55cd2e404c17b74b /vmfs/devices/disks/naa.55cd2e404c17b74b True
… continued

The disks’ names, paths, and type are returned, but there is more. Only
displaying the first, additional valuable information is present in the
results:

PS /> Get-VsanDisk | Select-Object -First 1 | Format-List

ExtensionData : VMware.Vim.HostScsiDisk
VsanDiskGroup : Disk group (020000000055cd2e404c166444494e54454c20)
IsCacheDisk : True
CanonicalName : naa.55cd2e404c166444
IsSsd : True
DevicePath : /vmfs/devices/disks/naa.55cd2e404c166444
Uuid : 020000000055cd2e404c166444494e54454c20
ScsiLun : naa.55cd2e404c166444
DiskFormatVersion : 7
NumComponent : 0
CapacityGB : 186.307807445526
UsedPercent : 0.0000000014996514435732169300
ReservedPercent : 0
Name : naa.55cd2e404c166444
Id : HostSystem-host-115/020000000055cd2e404c166444494e54454c20
Uid :
/VIServer=vsphere.local\administrator@vcsa.vcorp.com:443/VsanDisk=HostSystem-host-
115&slash;020000000055cd2e404c166444494e54454
 c20/

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 95

CapacityGB and UsedPercent are fields that can be used to show the
overall utilization of each disk. Used GB has to be calculated by
multiplying the capacity by the percentage used.

PS /> $Disk1 = $Cluster | Get-VMHost | Get-VsanDisk | Where-Object {$_.IsCacheDisk -eq
$False} | Select-Object -First 1
PS /> $Disk1.CapacityGB
199.9921875
PS /> $Disk1.UsedPercent
47.857338177272549708973006760
PS /> [math]::abs($Disk1.CapacityGB*($Disk1.UsedPercent/100))
95.71093750000000000000000000
PS />

That’s just for a single disk though. Each disk could be queried for each
disk group, and each disk group for a host, and each host for the
cluster.

To do this, loop through the hosts in the cluster, then loop through the
disk groups in each host, followed by looping through each disk in the
disk group.

Enumerate the cluster and store it
$Cluster = Get-Cluster -Name “vSAN”

Write the cluster name
Write-Host "Cluster: $Cluster"

Enumerate the hosts and loop through them
Foreach ($VMHost in ($Cluster|Get-VMHost)) {

 # Enumerate and Loop through the disk groups
 Foreach ($DiskGroup in ($VMHost | Get-VsanDiskGroup)) {

 # Write the disk group we're reporting from
 Write-Host "--$DiskGroup"

 # Enumerate and store the disks in the current disk group
 $Disks = $DiskGroup | Get-VsanDisk | Where-Object {$_.IsCacheDisk -eq $false}

 # Loop through each of the capacity disks
 Foreach ($Disk in $Disks) {

 # Set the color for the Used Percentage based on our thresholds
 switch ($Disk.UsedPercent) {
 {$_ -ge 0 -and $_ -le 70} {$UsedPctColor="Green"}
 {$_ -ge 70 -and $_ -le 85} {$UsedPctColor="Yellow"}
 {$_ -ge 85 -and $_ -le 101} {$UsedPcColor="Red"}
 }

 # Output the Disk, Capacity, and the Used Percentage
 Write-Host "-- --Disk: $Disk"
 Write-Host "-- -- --Capacity: " $Disk.CapacityGB.ToString("#.##")

 # Calculate used GB by multiplying Capacity by Used %
 $UsedGB = [math]::abs($Disk.CapacityGB*($Disk.UsedPercent/100))
 Write-Host "-- -- --Used GB: " $UsedGB.ToString("#.##")
 Write-Host "-- -- --Used Percent:" $Disk.UsedPercent.ToString("#.##") -
ForegroundColor $UsedPctColor
 Write-Host " "
 }
 }
}

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 96

The output looks something like this:

PS /> ./vsancapacity.ps1
Cluster: vSAN
-sc1.scdemo.local
--Disk group (02000000006000c291952813a5f8ff33afa05d16d0566972747561)
-- --Disk: naa.6000c2917d44723a60768b58ba3b43f6
-- -- --Capacity: 199.99
-- -- --Used GB: 95.71
-- -- --Used Percent: 47.86

-sc6.scdemo.local
--Disk group (02000000006000c290fa4da20e03ba4b084ca600bb566972747561)
-- --Disk: naa.6000c297483d20353981ce6863548820
-- -- --Capacity: 199.99
-- -- --Used GB: 117.53
-- -- --Used Percent: 58.77

-sc3.scdemo.local
--Disk group (02000000006000c2994a81bb88d7e3aecbe12c5618566972747561)
-- --Disk: naa.6000c29c2b5e7dcba599a777887acdc3
-- -- --Capacity: 199.99
-- -- --Used GB: 126.58
-- -- --Used Percent: 63.29

-sc5.scdemo.local
--Disk group (02000000006000c299bf718e3865d38f4601b62872566972747561)
-- --Disk: naa.6000c2955998f6195970c7d460a48d00
-- -- --Capacity: 199.99
-- -- --Used GB: 133.17
-- -- --Used Percent: 66.59

-sc2.scdemo.local
--Disk group (02000000006000c29ca6b01a0168af2b5c2219fdf7566972747561)
-- --Disk: naa.6000c29acf37e745bbbf8631c9242337
-- -- --Capacity: 199.99
-- -- --Used GB: 119.9
-- -- --Used Percent: 59.95

-sc4.scdemo.local
--Disk group (02000000006000c291ed81e3db71e12f4e2700a825566972747561)
-- --Disk: naa.6000c29e4b94409f19aa16af7295c50c
-- -- --Capacity: 199.99
-- -- --Used GB: 90.62
-- -- --Used Percent: 45.31
PS />

Using some additional math, we can serially sum the total capacity and
used capacity on a per disk group and per host level:

Enumerate the cluster and store it
$Cluster = Get-Cluster -Name “vSAN”

Write the cluster name
Write-Host "Cluster: $Cluster"

Enumerate the hosts and loop through them
Foreach ($VMHost in ($Cluster|Get-VMHost)) {

 # Write the host we're reporting from
 Write-Host "-$VMHost"

 # Zero out counter for Disk Groups
 $counter = 0

 # Zero out Host total
 $HostCapacity = 0

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 97

 $HostUsed = 0

 # Enumerate and Loop through the disk groups
 Foreach ($DiskGroup in ($VMHost | Get-VsanDiskGroup)) {

 # Write the disk group we're reporting from
 Write-Host "--($Counter) $DiskGroup"

 # Zero out Disk Group Totals for the current Disk Group
 $DiskGroupCapacity = 0
 $DiskGroupUsed = 0

 # Enumerate and store the disks in the current disk group
 $Disks = $DiskGroup | Get-VsanDisk | Where-Object {$_.IsCacheDisk -eq $false}

 # Loop through each of the capacity disks
 Foreach ($Disk in $Disks) {

 # Set the color for the Used Percentage based on our thresholds
 switch ($Disk.UsedPercent) {
 {$_ -ge 0 -and $_ -le 70} {$UsedPctColor="Green"}
 {$_ -ge 70 -and $_ -le 85} {$UsedPctColor="Yellow"}
 {$_ -ge 85 -and $_ -le 101} {$UsedPcColor="Red"}
 }

 # Output the Disk, Capacity, and the Used Percentage
 Write-Host "-- --Disk: $Disk"

 $DiskGroupCapacity += $Disk.CapacityGB

 Write-Host "-- -- --Capacity: " $Disk.CapacityGB.ToString("#.##")

 # Calculate used GB by multiplying Capacity by Used %
 $UsedGB = [math]::abs($Disk.CapacityGB*($Disk.UsedPercent/100))

 $DiskGroupUsed += $UsedGB

 Write-Host "-- -- --Used GB: " $UsedGB.ToString("#.##")
 Write-Host "-- -- --Used Percent:" $Disk.UsedPercent.ToString("#.##") -
ForegroundColor $UsedPctColor
 Write-Host " "
 }
 Write-Host "Disk Group $Counter Capacity (in
GB):"$DiskGroupCapacity.ToString("#.##")
 Write-Host "Disk Group $Counter Used (in GB):"$DiskGroupUsed.ToString("#.##")

 $HostCapacity += $DiskGroupCapacity
 $HostUsed += $DiskGroupUsed

 $Counter += 1
 }
 Write-Host "---"
 Write-Host "Host Capacity (in GB):"$HostCapacity.ToString("#.##")
 Write-Host "Host Used (in GB):"$HostUsed.ToString("#.##")
 Write-Host ""
 Write-Host "---"
}

This script can be found here: https://code.vmware.com/samples/5319

https://code.vmware.com/samples/5319

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 98

Useable vSAN Capacity Based on Storage Policy

vSAN Datastores have always reported RAW capacity. With the
introduction of vSAN 6.7 Update 1, administrators could estimate the
amount of useable capacity a vSAN datastore would have available
using a given Storage Policy. This is presented in the vSphere Client,
and allows an administrator to choose which policy they wish to
estimate using.

Being able to estimate free useable capacity is a great addition to the
native reporting of a vSAN cluster. But what if you want to
programmatically report this across one or more clusters?

The Get-VsanSpaceUsage cmdlet has provided information including:

• ClusterName
• Cluster Capacity (GB)
• Free Capacity (GB)
• Virtual Disk Usage (GB)
• VM Namespace Disk Usage (GB)
• iSCSI LUN/Target Disk Usage (GB)

Before the release of PowerCLI 11.2, it was not as easy to determine
what the usable capacity was when using this Storage Policy, that
Storage Policy, or another Storage Policy.

With PowerCLI 11.2, the “VsanWhatIfCapacity” property was added to
the Get-VsanSpaceUsage cmdlet.

Invoking the Get-VsanSpaceUsage cmdlet with a -StoragePolicy
parameter, will populate the VsanWhatIfCapacity property to easily
report what the capacity of the vSAN datastore would be for a given
policy:

PS /> $DefaultPolicy = Get-SpbmStoragePolicy -Name "vSAN Default Storage Policy"
PS /> $RAID5Policy = Get-SpbmStoragePolicy -Name "RAID5"
PS /> (Get-VsanSpaceUsage -StoragePolicy $DefaultPolicy).VsanWhatIfCapacity
StoragePolicy TotalWhatIfCapacityGB FreeWhatIfCapacityGB
------------- --------------------- --------------------

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 99

vSAN Default Storage Policy 4471.21875 4201.66796873882

PS /> (Get-VsanSpaceUsage -StoragePolicy $RAID5Policy).VsanWhatIfCapacity
StoragePolicy TotalWhatIfCapacityGB FreeWhatIfCapacityGB
------------- --------------------- --------------------
RAID5 6706.8298017066 6302.50352873374

PS />

vSAN Datastore default Storage Policy

vSAN Datastores typically are assigned the “vSAN Default Storage
Policy” which includes mirrored protection and a failure to tolerate of 1.

Determining the storage policy assigned to a vSAN datastore has
required logging into the UI, browsing to the datastore, and looking
under the General menu in the Configuration tab.

While this is not a time consuming task for environments where there
are only a few clusters, it can be a very arduous task attempting to
collect this information across tens or hundreds of vSAN datastores.

As mentioned in the Configuration Recipes section, as of PowerCLI 11.3,
it is easy to set the default policy that is assigned to a vSAN datastore
using the Set-SpbmEntityConfiguration cmdlet because of the addition
of the -Datastore parameter.

Shown in recipe used to set the default policy, the Get-
SpbmEntityConfiguration has to retrieve the currently assigned policy.

The syntax to return the currently assigned storage policy is:

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 100

PS /> $Datastore = Get-Datastore -Name “DatastoreName”
PS /> Get-SpbmEntityConfiguration -Datastore $Datastore

Entity Storage Policy Status Time Of Check
------ -------------- ------ -------------
vsanDatastore vSAN Default Storage Policy

This is good for a single datastore (set to a variable above). In this
situation, we know the name of the datastore. What if we didn’t know
the name of the datastore?

Executing the above variable ($Datastore), we can see the additional
properties available to the Datastore Object type:

PS /> $Datastore |fl

DatacenterId : Datacenter-datacenter-2
Datacenter : Datacenter
ParentFolderId : Folder-group-s5
ParentFolder : datastore
DatastoreBrowserPath :
vmstores:/vcsamc.satm.eng.vmware.com@443/Datacenter/vsanDatastore
FreeSpaceMB : 7175980
CapacityMB : 9157056
Accessible : True
Type : vsan
StorageIOControlEnabled : False
CongestionThresholdMillisecond :
State : Available
ExtensionData : VMware.Vim.Datastore
CapacityGB : 8942.4375
FreeSpaceGB : 7007.79296875
Name : vsanDatastore
Id : Datastore-datastore-673

Notice the .Type property of “vsan”. This is an easy way to distinguish
which datastores are vSAN datastores.

Using Get-Datastore without a Name parameter will return all
datastores. Filtering those results where the Type is vSAN, will return
all vSAN datastores attached to a vCenter environment:

PS /> Get-Datastore | Where-Object {$_.Type -eq 'vsan'}

Name FreeSpaceGB CapacityGB
---- ----------- ----------
vsanDatastore 7,007.793 8,942.438
vsanDatastoreSC 1,575.578 1,599.938

This can be written more efficiently like this:

PS /> (Get-Datastore).Where{$_.Type -eq 'vsan'}
Name FreeSpaceGB CapacityGB
---- ----------- ----------
vsanDatastore 7,007.793 8,942.438
vsanDatastoreSC 1,575.578 1,599.938

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 101

Assigning a variable the results of the above statement will put all
vSAN Datastore objects into an array:

PS /> $VsanDatastores = (Get-Datastore).Where{$_.Type -eq 'vsan'}

With the vSAN Datastore objects in an array, they can easily be piped
into the Get-SpbmEntityConfiguration cmdlet to provide a simple
report of which polices are assigned to each vSAN Datastore:

PS /> $VsanDatastores | Get-SpbmEntityConfiguration

Entity Storage Policy Status Time Of Check
------ -------------- ------ -------------
vsanDatastore vSAN Default Storage Policy
vsanDatastoreSC vSAN Stretched Cluster Default

For a quick ad-hoc one-liner, the variable isn’t required:

PS /> (Get-Datastore).Where{$_.Type -eq "vsan"}|Get-SpbmEntityConfiguration

Entity Storage Policy Status Time Of Check
------ -------------- ------ -------------
vsanDatastore vSAN Default Storage Policy
vsanDatastoreSC vSAN Stretched Cluster Default

Per-VM Space Utilization
Per disk, disk group, host, and cluster utilization is a good start, but
what about a report that shows the consumption of virtual machines?

The previous script looked at capacity used, on vSAN capacity disks in
a vSAN disk group, regardless of the amount, or type of data. Individual
VM’s and their objects (VM Namespace, Virtual Disks, Swap Files, etc)
can be reported on as well, though not natively with a PowerCLI
cmdlet.

William Lam put together a sample script to report detailed per-VM
space utilization that utilizes VsanQueryObjectIdentities API method.
This is a method that is available as part of the VsanObjectSystem
Managed Object.

The VsanObjectSystem Managed Object can be used with vCenter or
individual vSAN hosts.

In William’s script, the VsanObjectSystem is used against individual
hosts to return raw data from the VsanQueryObjectIdentities method.

The documentation suggests that using the VsanQueryObjectIdentities
method against the cluster will return the same information as using the
method against individual hosts. As of this writing, PowerCLI 11.1 does
not return full complement of data from this method.

When calling the VsanQueryObjectIdentities method against a single
host, only the objects that part of VM’s that are are registered on that
host are retrieved.

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 102

Because of this, each host will be queried for VM’s and their objects to
return the per-VM utilization. A quick script will retrieve the data that
will be used to report on.

Scope query within vSAN/vSphere Cluster
$clusterView = Get-View -ViewType ClusterComputeResource -Property Name,Host -Filter
@{"name"=$Cluster}

Retrieve list of ESXi hosts from cluster
which we will need to directly connect to use call VsanQueryObjectIdentities()
$vmhosts = $clusterView.host

Setup our results array which results from each host will be aggregated
$results = @()

foreach ($vmhost in $vmhosts) {
 # Get the VMHost Name
 $vmhostView = Get-View $vmhost -Property Name

 # Connect to the VMHost
 $esxiConnection = Connect-VIServer -Server $vmhostView.name -User $ESXiHostUsername -
Password $ESXiHostPassword

 # Connect to the VsanObjectSystem Managed Object on the current host
 $vos = Get-VSANView -Id "VsanObjectSystem-vsan-object-system" -Server $esxiConnection

 # Retrieve the vSAN Object identities of the objects on the VMHost
 $identities = $vos.VsanQueryObjectIdentities($null,$null,$null,$false,$true,$true)

 # convert the raw Json formatted data to something more useful
 $json = $identities.RawData|ConvertFrom-Json
 $jsonResults = $json.identities.vmIdentities
}

The converted identity data from each host looks something like this:

@{vmNsObjectUuid=4ba41a5c-9c12-0643-9921-ecf4bbf0d200; vmInstanceUuid=42027559-0f29-
03cb-260e-c737f79dd20f; objIdentities=System.Object[]} @{vmNsObjectUuid=8ba41a5c-2564-
bbb5-3feb-ecf4bbf0ba08; vmInstanceUuid=42023b87-c24b-7660-88d4-1eab8b9e98c6;
objIdentities=System.Object[]} @{vmNsObjectUuid=82a41a5c-943c-a8d9-cff7-ecf4bbf0ba08;
vmInstanceUuid=420239a9-69f0-635b-3f60-5e3957a8a1ba; objIdentities=System.Object[]}
@{vmNsObjectUuid=b5a41a5c-e296-7399-4973-ecf4bbf0d200; vmInstanceUuid=4202bf58-28b5-
5abd-456a-2264d5feeddc; objIdentities=System.Object[]} @{vmNsObjectUuid=80a41a5c-8426-
33bd-9c9f-ecf4bbf0d200; vmInstanceUuid=420203b1-5e39-bf2e-dc53-45ff41893243;
objIdentities=System.Object[]} @{vmNsObjectUuid=a1a41a5c-767c-911b-a793-ecf4bbf0b8d8;
vmInstanceUuid=42020e78-4b16-8c8d-6b43-c59836f89455; objIdentities=System.Object[]}
@{vmNsObjectUuid=70a41a5c-149e-be12-123f-ecf4bbf0d200; vmInstanceUuid=4202337b-f91d-
8eb4-b789-2d7194ce0872; objIdentities=System.Object[]} @{vmNsObjectUuid=d7bafe5b-f1b9-
fcf9-35aa-ecf4bbf0ba08; vmInstanceUuid=4202626c-d2c3-4e9d-ca56-f1bb4ec8808c;
objIdentities=System.Object[]}

The $jsonResults are not really that easy to read.

A loop can be used to enumerate all of the identities, retaining those
that provide some value, and discarding those that do not. The
retained results can then be massaged to have a more friendly output.

foreach ($vmInstance in $jsonResults) {
 # Here we’re only grabbing the objIdentities in the $jsonResults
 $identities = $vmInstance.objIdentities

 # Loop through each of the Identities, sorting on the Property type
 foreach ($identity in $identities | Sort-Object -Property "type") {

 # Retrieve the VM Name

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 103

 if($identity.type -eq "namespace") {

 # Remember that we’re not connected to vCenter anymore, only the current host
 # We’ll need to retrive the attributes of the object from the current host
 $vsanIntSys = Get-View (Get-VMHost -Server
$esxiConnection).ExtensionData.ConfigManager.vsanInternalSystem

 # Setup the $attributes variable so we can enumerate all of the object attributes
 $attributes = ($vsanIntSys.GetVsanObjExtAttrs($identity.uuid)) | ConvertFrom-JSON

 # Loop through each of the object’s attributes, and retrieve the VM’s name
 foreach ($attribute in $attributes | Get-Member) {
 # crappy way to iterate through keys ...
 if($($attribute.Name) -ne "Equals" -and $($attribute.Name) -ne "GetHashCode" -
and $($attribute.Name) -ne "GetType" -and $($attribute.Name) -ne "ToString") {
 $objectID = $attribute.name
 $vmName = $attributes.$($objectID).'User friendly name'
 }
 }
 }

 # Other attributes returned include physicalUsedCapacity, reservedCapacity
 # File path, and the type of object

 # Convert B to GB
 $physicalUsedGB = [math]::round($identity.physicalUsedB/1GB, 2)
 $reservedCapacityGB = [math]::round($identity.reservedCapacityB/1GB, 2)

 # Build our custom object to store only the data we care about
 $tmp = [pscustomobject] @{
 VM = $vmName
 File = $identity.description;
 Type = $identity.type;
 physicalUsedGB = $physicalUsedGB;
 reservedCapacityGB = $reservedCapacityGB;
 }

 # Filter out a specific VM if provided
 if($VM) {
 if($vmName -eq $VM) {
 $results += $tmp
 }
 } else {
 $results += $tmp
 }
 }
 }

Combining the retrieval of identity data from each host, along with the
cleaned-up reporting gives us an output something like this:

VM File Type physUsedGB rsrvdGB
-- ---- ---- ---------- -------
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST.vmx namespace 0.71 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_11.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_2.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_4.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_3.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_10.vmdk vdisk 0.07 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_7.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_6.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_8.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_5.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_1.vmdk vdisk 0.07 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_13.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST.vmdk vdisk 1.14 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_15.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_12.vmdk vdisk 0.07 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_9.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_14.vmdk vdisk 0.07 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST.vswp vmswap 0.04 0
DC2 [vsanDatastore] 23b1b65b-e473-60ba-c119-ecf4bbf0ba08/DC2.vmx namespace 0.81 0
DC2 [vsanDatastore] 23b1b65b-e473-60ba-c119-ecf4bbf0ba08/DC2.vmdk vdisk 56.47 0

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 104

DC2 [vsanDatastore] 23b1b65b-e473-60ba-c119-ecf4bbf0ba08/DC2.vswp vmswap 0.04 0
SC2_1 [vsanDatastore] 75a41a5c-3d77-56cb-6e26-ecf4bbf0d3c8/SC2.vmx namespace 0.82 0
SC2_1 [vsanDatastore] 75a41a5c-3d77-56cb-6e26-ecf4bbf0d3c8/SC2_1.vmdk vdisk 32.36 0
SC2_1 [vsanDatastore] 75a41a5c-3d77-56cb-6e26-ecf4bbf0d3c8/SC2_2.vmdk vdisk 0.07 0
SC2_1 [vsanDatastore] 75a41a5c-3d77-56cb-6e26-ecf4bbf0d3c8/SC2.vmdk vdisk 1.25 0
SC2_1 [vsanDatastore] 75a41a5c-3d77-56cb-6e26-ecf4bbf0d3c8/SC2.vswp vmswap 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST.vmx namespace 0.71 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_11.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_2.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_4.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_3.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_10.vmdk vdisk 0.07 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_7.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_6.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_8.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_5.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_1.vmdk vdisk 0.07 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_13.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST.vmdk vdisk 1.14 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_15.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_12.vmdk vdisk 0.07 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_9.vmdk vdisk 0.04 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST_14.vmdk vdisk 0.07 0
TEST [vsanDatastore] 014b3e5c-11ad-ffa3-bbc3-ecf4bbf0d3c8/TEST.vswp vmswap 0.04 0
DC2 [vsanDatastore] 23b1b65b-e473-60ba-c119-ecf4bbf0ba08/DC2.vmx namespace 0.81 0
DC2 [vsanDatastore] 23b1b65b-e473-60ba-c119-ecf4bbf0ba08/DC2.vmdk vdisk 56.47 0
DC2 [vsanDatastore] 23b1b65b-e473-60ba-c119-ecf4bbf0ba08/DC2.vswp vmswap 0.04 0
SC2_1 [vsanDatastore] 75a41a5c-3d77-56cb-6e26-ecf4bbf0d3c8/SC2.vmx namespace 0.82 0
SC2_1 [vsanDatastore] 75a41a5c-3d77-56cb-6e26-ecf4bbf0d3c8/SC2_1.vmdk vdisk 32.36 0
SC2_1 [vsanDatastore] 75a41a5c-3d77-56cb-6e26-ecf4bbf0d3c8/SC2_2.vmdk vdisk 0.07 0
SC2_1 [vsanDatastore] 75a41a5c-3d77-56cb-6e26-ecf4bbf0d3c8/SC2.vmdk vdisk 1.25 0
SC2_1 [vsanDatastore] 75a41a5c-3d77-56cb-6e26-ecf4bbf0d3c8/SC2.vswp vmswap 0.04 0

The full source of the combined code can be found here:
https://github.com/lamw/vghetto-
scripts/blob/master/powershell/VSANVMDetailedUsage.ps1

Per-VM Storage Policy Compliance
Failure to maintain Storage Policy compliance for vSAN Objects could
determine the difference from available data and inaccessible data.

vSAN Objects that are compliant with their Storage Policy are happy
and healthy vSAN Objects. PowerCLI has long had the ability to report
the Storage Policy compliance status of vSAN Objects using the Get-
SpbmEntityConfiguration cmdlet.

PS /Users/jase/PowerCLI> Get-SpbmEntityConfiguration

Entity Storage Policy Status Time Of Check
------ -------------- ------ -------------
VCSA RAID5 compliant 1/19/19 4:06:21 AM
SQL1 RAID5 compliant 1/19/19 4:06:21 AM
VCSA1 RAID5 compliant 1/19/19 4:06:21 AM
APP7 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:22 AM
Hard disk 1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:22 AM
Hard disk 1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:22 AM
APP6 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:23 AM
Hard disk 2 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:23 AM
Hard disk 2 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:23 AM
Hard disk 1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:22 AM
Hard disk 2 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:24 AM
Hard disk 2 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:24 AM
APP1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:24 AM
APP5 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:24 AM
NEWVM Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:24 AM
Hard disk 1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:25 AM
APP3 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:25 AM
APP4 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:25 AM
Hard disk 1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:25 AM
APP2 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:25 AM
Hard disk 3 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:26 AM
Hard disk 3 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:26 AM
Hard disk 1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:26 AM
Hard disk 1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:26 AM
Hard disk 1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:26 AM
TEST Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:26 AM

https://github.com/lamw/vghetto-scripts/blob/master/powershell/VSANVMDetailedUsage.ps1
https://github.com/lamw/vghetto-scripts/blob/master/powershell/VSANVMDetailedUsage.ps1

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 105

Hard disk 1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:06:27 AM
Hard disk 2 vSAN Default Storage Policy compliant 1/19/19 4:06:27 AM
Hard disk 1 vSAN Default Storage Policy compliant 1/19/19 4:06:27 AM
Hard disk 1 vSAN Default Storage Policy compliant 1/19/19 4:06:27 AM
Hard disk 3 vSAN Default Storage Policy compliant 1/19/19 4:06:28 AM
Hard disk 1 vSAN Default Storage Policy compliant 1/19/19 4:06:28 AM

Using the cmdlet by itself will return the Storage Policy information for
every object that is managed by a vCenter Server. Also, there is no
easy way to tell from the above information which “Hard disk 1”
belongs to which VM.

It should be as easy as only retrieving the VMs from the $Cluster right?

PS /> $Cluster | Get-VM | Sort-Object -Property Name | Get-SpbmEntityConfiguration

Entity Storage Policy Status Time Of Check
------ -------------- ------ -------------
APP1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:20:02 AM
APP2 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:20:02 AM
APP3 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:20:03 AM
APP4 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:20:04 AM
APP5 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:20:05 AM
APP6 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:20:06 AM
APP7 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:20:06 AM
SQL1 RAID5 compliant 1/19/19 4:20:07 AM
VCSA RAID5 compliant 1/19/19 4:20:08 AM
VCSA1 RAID5 compliant 1/19/19 4:20:09 AM

Wrong. In this example, only the VM’s are the Entities, not their disks.
Complete results will require a bit more elaborate code.

The above code already returns the compliance status of the VM’s
namespace. Retrieving the hard disks from each VM is relatively easy
but will require placing all of the VMs in an array, and then looping
through that array to query the VM for a list of hard disks that can then
be checked for compliance.

$VMS = $Cluster | Get-VM | Sort-Object Name
Foreach ($VM in $VMS) {
 Get-SpbmEntityConfiguration -VM $VM
 $HardDisks = Get-HardDisk -VM $VM
 Foreach ($HardDisk in $HardDisks) {
 Get-SpbmEntityConfiguration -HardDisk $HardDisk
 }
}

This results in:

Entity Storage Policy Status Time Of Check
------ -------------- ------ -------------
APP1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:36 AM
Hard disk 1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:37 AM
Hard disk 2 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:38 AM
APP2 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:39 AM
Hard disk 1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:40 AM
APP3 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:41 AM
Hard disk 1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:42 AM
Hard disk 2 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:43 AM
Hard disk 3 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:44 AM
APP4 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:44 AM
Hard disk 1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:45 AM
APP5 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:46 AM
Hard disk 1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:48 AM
Hard disk 2 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:49 AM
APP6 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:49 AM
Hard disk 1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:50 AM
APP7 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:51 AM
Hard disk 1 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:52 AM

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 106

Hard disk 2 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:53 AM
Hard disk 3 Mirrored-75-SpaceReserved-5... compliant 1/19/19 4:50:54 AM
SQL1 RAID5 compliant 1/19/19 4:50:55 AM
Hard disk 1 vSAN Default Storage Policy compliant 1/19/19 4:50:56 AM
VCSA RAID5 compliant 1/19/19 4:50:57 AM
Hard disk 1 vSAN Default Storage Policy compliant 1/19/19 4:50:58 AM
Hard disk 2 vSAN Default Storage Policy compliant 1/19/19 4:50:59 AM
Hard disk 3 vSAN Default Storage Policy compliant 1/19/19 4:51:00 AM
VCSA1 RAID5 compliant 1/19/19 4:51:01 AM
Hard disk 1 vSAN Default Storage Policy compliant 1/19/19 4:51:02 AM

What if this information is exported as a CSV file that is imported into
Excel or some other location? “Hard disk 1” is listed multiple times.
Using a $results array like in William’s example above, with an object
for the VM Namespace results and an object for the Hard Disk results,
the Entity results can be modified to be a bit more descriptive:

$VMs = $Cluster | Get-VM | Sort-Object Name

$results = @()
Foreach ($VM in $VMs) {
 $VmCompliance = Get-SpbmEntityConfiguration -VM $VM
 $VmTmp = [PSCustomObject] @{
 VM = $VmCompliance.Name + "-Namespace "
 Policy = $VmCompliance.StoragePolicy
 Status = $VmCompliance.ComplianceStatus
 TimeofCheck = $VmCompliance.TimeOfCheck
 }

 $results += $VmTmp

 $HardDisks = Get-HardDisk -VM $VM
 Foreach ($HardDisk in $HardDisks) {
 $HdCompliance = Get-SpbmEntityConfiguration -HardDisk $HardDisk

 $HdTmp = [PSCustomObject] @{
 VM = $VmCompliance.Name + "-" + $HdCompliance.Name
 Policy = $HdCompliance.StoragePolicy
 Status = $HdCompliance.ComplianceStatus
 TimeofCheck = $HdCompliance.TimeOfCheck
 }
 $results +=$HdTmp
 }
}
$results |ft

Which results in:

VM Policy Status TimeofCheck
-- ------ ------ -----------
APP1-Namespace Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:05 AM
APP1-Hard disk 1 Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:06 AM
APP1-Hard disk 2 Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:06 AM
APP2-Namespace Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:07 AM
APP2-Hard disk 1 Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:07 AM
APP3-Namespace Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:08 AM
APP3-Hard disk 1 Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:09 AM
APP3-Hard disk 2 Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:09 AM
APP3-Hard disk 3 Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:10 AM
APP4-Namespace Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:10 AM
APP4-Hard disk 1 Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:11 AM
APP5-Namespace Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:11 AM
APP5-Hard disk 1 Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:12 AM
APP5-Hard disk 2 Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:12 AM
APP6-Namespace Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:13 AM
APP6-Hard disk 1 Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:13 AM
APP7-Namespace Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:14 AM
APP7-Hard disk 1 Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:15 AM
APP7-Hard disk 2 Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:15 AM
APP7-Hard disk 3 Mirrored-75-SpaceReserved-5K-Limit compliant 1/19/19 4:55:16 AM
SQL1-Namespace RAID5 compliant 1/19/19 4:55:16 AM
SQL1-Hard disk 1 vSAN Default Storage Policy compliant 1/19/19 4:55:17 AM
VCSA-Namespace RAID5 compliant 1/19/19 4:55:17 AM
VCSA-Hard disk 1 vSAN Default Storage Policy compliant 1/19/19 4:55:18 AM
VCSA-Hard disk 2 vSAN Default Storage Policy compliant 1/19/19 4:55:19 AM
VCSA-Hard disk 3 vSAN Default Storage Policy compliant 1/19/19 4:55:19 AM
VCSA1-Namespace ... RAID5 compliant 1/19/19 4:55:19 AM
VCSA1-Hard disk 1 vSAN Default Storage Policy compliant 1/19/19 4:55:20 AM

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 107

Physical device enclosure location
A common request is to be able to determine the physical location of a
storage device on a vSphere host. Some storage controllers denote
where devices are in an enclosure, but not all. Additionally, storage
devices that are not attached to a controller may not display where
they are attached to a host, such as on a PCIe bus.

Storage device physical location information is not natively retrieved
through a PowerCLI cmdlet. This information is exposed using the esxcli
command line utility in the esxcli storage core namespace.

In previous examples, the Get-EsxCli cmdlet has been used to extend
esxcli to PowerCLI. A quick refresher on how to use esxcli in PowerCLI
can be seen below:

$CurrentHost = Get-VMHost -Name “host1.demo.local”
$EsxCli = Get-EsxCli -VMHost $CurrentHost -V2

Before using the power of esxcli in PowerCLI, the vSAN disks will need
to be put into an array. The Get-SCSILun cmdlet will return the storage
devices in the ESXi host. The only storage devices that need to be
retrieved will have a “disk” type designation.

$ScsiLuns = Get-ScsiLun -VmHost $VMHost -LunType disk | Sort-Object Name, CapacityGB

With the list of storage devices with the type “disk” added to an array,
each of these storage devices can be used along with esxcli to
determine their physical location and some additional information.

Device information can be retrieved using the command line:
esxcli storage core device physical get -d device

Invoking the get operation on the esxcli namespace for the physical
storage device will return the physical device location if it exists.

Wrapping the process that returns the physical location in a loop can
enumerate the physical location in each of the storage devices on the
host.

Foreach ($ScsiLun in $ScsiLuns) {
 # Retrieve the physical location of the current disk
 $StorageDevice = $EsxCli.storage.core.device.physical.get.Invoke(@{device=$ScsiLun.CanonicalName})
 $StorageDevice.physicallocation
}

A more elaborate sample script that reports physical device location
can be found on the VMware Code site:
https://code.vmware.com/samples/5539

https://code.vmware.com/samples/5539

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 108

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 109

Sample RVC vsan.vm_object_info Report
The Ruby vSphere Console (RVC) has been a tool that vSAN
administrators used early on for administration and reporting purposes.

The RVC requires administrators to connect to vCenter over SSH,
connect to the RVC for the current instance, and call different scripts to
retrieve different results.

These RVC scripts are very valuable, but do not easily allow any
interaction with other scripting processes.

With the introduction of the Get-VsanObject and Get-VsanComponent
cmdlets in PowerCLI 11.0, much of the information returned from RVC
scripts can be returned with PowerCLI.

Requires William Lam’s VSANUUIDtoVM Function
https://github.com/lamw/vghetto-scripts/blob/master/powershell/VSANUUIDTranslate.ps1

Get the vSAN Cluster Object
$Cluster = Get-Cluster -Name “vSAN”

Get the working VM to report on
$VsanVM = Get-VM -Name $VM

Get the vSAN Objects associated with the VM
$VMObjects = Get-VsanObject -VM $VsanVM

 $SPBM_Policies = Get-SpbmStoragePolicy
 Write-Host "VM $VsanVM"

Foreach ($VMObject in $VMObjects) {

 Switch ($VMObject.Type) {
 "VmNamespace" { Write-Host "Namespace directory - " -NoNewline}
 "VmSwap" { Write-Host "VmSwap - " -NoNewline }
 "VDisk" { Write-Host "Virtual Disk - " -NoNewline }
}

Write-Host "Storage Policy - " $VMObject.StoragePolicy.Name -NoNewline
Write-Host (Get-SpbmStoragePolicy -Name
$VMObject.StoragePolicy).AnyOfRuleSets.AnyOfRuleSets
 Get-VSANUUIDToVM -Cluster $Cluster -VSANObjectID $VMObject.id

 Foreach ($VsCp in (Get-VsanComponent -VsanObject $VMObject)) {

 Write-Host " " $VsCP.Type ": " -NoNewline
 Write-Host $VsCp.id " (" -NoNewline
 Write-Host "state:" -NoNewline
 If ($VsCp.Status -eq "ACTIVE") {
 Write-Host $VsCp.Status ", " -NoNewline -ForegroundColor Green
 } else {
 Write-Host $VsCp.Status ", " -NoNewline -ForegroundColor Yellow
 }
 Write-Host "capacity disk:" $VsCp.VsanDisk -NoNewline
 Write-Host " host: " $VsCp.VsanDisk.VsanDiskGroup.VMHost.Name -NoNewline
 Write-Host ")"
 }
 Write-Host " "
 }

The output looks very much like the RVC vsan.vm_object_info script:

PS /> Get-SomeVsanObjectInformation -VsanCluster "vSAN" -VM APP2
VM APP2

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 110

Namespace directory - Storage Policy - Mirrored-75-SpaceReserved-5K-Limit

UUID : b8224a5c-c6c6-5ce9-7eeb-005056826867
Object type : vsan
Object size : 273804165120
User friendly name : APP2_1
HA metadata : (null)
Allocation type : Thin
Policy : (("stripeWidth" i1) ("cacheReservation" i0)
("proportionalCapacity" i75) ("hostFailuresToTolerate" i1) ("forceProvisioning" i0)
 ("spbmProfileId" "5302e23b-b12f-4e0a-a3ef-51c74fcfedba")
("spbmProfileGenerationNumber" l+1) ("replicaPreference" "Performance")
 ("iopsLimit" i5000) ("checksumDisabled" i0) ("spbmProfileName"
"Mirrored-75-SpaceReserved-5K-Limit"))
Object class : vmnamespace
Object capabilities : NONE
Object path : /vmfs/volumes/vsan:52c4a44798101504-e2bdb0a7f4ca8b50/APP2_1
Group uuid : 00000000-0000-0000-0000-000000000000
Container uuid : 00000000-0000-0000-0000-000000000000

 Component : 7f4d4b5c-15df-b4e5-d55d-005056822e0f (state:ACTIVE, capacity disk:
naa.6000c2917d44723a60768b58ba3b43f6 host: sc1.scdemo.local)
 Component : f04d4b5c-fc36-3488-1a13-005056822e0f (state:ACTIVE, capacity disk:
naa.6000c297483d20353981ce6863548820 host: sc6.scdemo.local)
 Witness : f04d4b5c-930f-3888-0630-005056822e0f (state:A ACTIVE, capacity disk:
naa.6000c29acf37e745bbbf8631c9242337 host: sc2.scdemo.local)

Virtual Disk - Storage Policy - Mirrored-75-SpaceReserved-5K-Limit
UUID : bb224a5c-8536-5d86-9f3d-005056826867
Object type : vsan
Object size : 42949672960
User friendly name : (null)
HA metadata : (null)
Allocation type : Thin
Policy : (("stripeWidth" i1) ("cacheReservation" i0)
("proportionalCapacity" i75) ("hostFailuresToTolerate" i1) ("forceProvisioning" i0)
 ("spbmProfileId" "5302e23b-b12f-4e0a-a3ef-51c74fcfedba")
("spbmProfileGenerationNumber" l+1) ("replicaPreference" "Performance")
 ("iopsLimit" i5000) ("checksumDisabled" i0) ("spbmProfileName"
"Mirrored-75-SpaceReserved-5K-Limit"))
Object class : vdisk
Object capabilities : NONE
Object path : /vmfs/volumes/vsan:52c4a44798101504-e2bdb0a7f4ca8b50/b8224a5c-
c6c6-5ce9-7eeb-005056826867/APP2.vmdk
Group uuid : b8224a5c-c6c6-5ce9-7eeb-005056826867
Container uuid : (null)

 Component : cf484f5c-3fcc-3fc7-c88b-005056822e0f (state:ACTIVE, capacity disk:
naa.6000c29acf37e745bbbf8631c9242337 host: sc2.scdemo.local)
 Component : cf484f5c-1c32-42c7-e024-005056822e0f (state:ACTIVE, capacity disk:
naa.6000c2917d44723a60768b58ba3b43f6 host: sc1.scdemo.local)
 Witness : cf484f5c-0057-43c7-cf25-005056822e0f (state:ACTIVE, capacity disk:
naa.6000c297483d20353981ce6863548820 host: sc6.scdemo.local)

VmSwap - Storage Policy - Mirrored-75-SpaceReserved-5K-Limit
UUID : a6744a5c-4653-33e2-b892-00505682bbb0
Object type : vsan
Object size : 4294967296
User friendly name : (null)
HA metadata : (null)
Allocation type : Thin
Policy : (("stripeWidth" i1) ("cacheReservation" i0)
("proportionalCapacity" i75) ("hostFailuresToTolerate" i1) ("forceProvisioning" i1)
 ("spbmProfileId" "5302e23b-b12f-4e0a-a3ef-51c74fcfedba")
("spbmProfileGenerationNumber" l+1) ("replicaPreference" "Performance")
 ("iopsLimit" i5000) ("checksumDisabled" i0) ("spbmProfileName"
"Mirrored-75-SpaceReserved-5K-Limit"))
Object class : vmswap
Object capabilities : NONE
Object path : /vmfs/volumes/vsan:52c4a44798101504-e2bdb0a7f4ca8b50/b8224a5c-
c6c6-5ce9-7eeb-005056826867/APP2-d5c0da44.vswp
Group uuid : b8224a5c-c6c6-5ce9-7eeb-005056826867

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 111

Container uuid : (null)

 Component : cf484f5c-744d-72b1-798d-005056822e0f (state:ACTIVE, capacity disk:
naa.6000c297483d20353981ce6863548820 host: sc6.scdemo.local)
 Component : cf484f5c-247d-75b1-6d2d-005056822e0f (state:ACTIVE, capacity disk:
naa.6000c29acf37e745bbbf8631c9242337 host: sc2.scdemo.local)
 Witness : cf484f5c-9bb9-76b1-ca52-005056822e0f (state:ACTIVE, capacity disk:
naa.6000c2917d44723a60768b58ba3b43f6 host: sc1.scdemo.local)

This looks very similar to the output of vsan.vm_object_info in the RVC.

This script can be found here: https://code.vmware.com/samples/4710

https://code.vmware.com/samples/4710

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 112

vSAN Encryption Health
An Encryption Health Report can be used to quickly see the state of an
encrypted vSAN cluster.

This information is not directly accessible using a PowerCLI cmdlet. The
Get-VsanView cmdlet will be used retrieve the encryption health of the
cluster.

Enumerate the cluster and store it
$Cluster = Get-Cluster -Name “vSAN”

vSAN Cluster Health
$VsanHealth = Get-VsanView -Id VsanVcClusterHealthSystem-vsan-cluster-health-system

#Grab our Encryption Health Information
$EncryptionHealth = $VsanHealth.VsanQueryVcClusterHealthSummary(
$Cluster.ExtensionData.MoRef,$null,$null,$null,
@('encryptionHealth'),$null,"defaultView").EncryptionHealth

The $EncryptionHealth variable includes the following information:

PS /> $EncryptionHealth

OverallHealth : green
ConfigHealth : green
KmsHealth : green
VcKmsResult : VMware.Vsan.Views.VsanVcKmipServersHealth
HostResults : {sc5.scdemo.local, sc4.scdemo.local, sc1.scdemo.local,
sc3.scdemo.local...}
AesniHealth : green

Immediately some items are values available that can be reported on,
including the overall health, the configuration health, and the AES-NI
Health. Others must be expanded upon.

The VcKmsResult property can be expanded to dive deeper into the
health of the KMS Configuration:

PS /> $EncryptionHealth.VcKmsResult

Health : green
Error :
KmsProviderId : KMS
KmsHealth : {10.127.75.113}
ClientCertHealth : green
ClientCertExpireDate : 11/7/22 9:41:06 AM

More results can be found within the HostResults property for each
host in the cluster.

PS /> $EncryptionHealth.HostResults

Hostname : sc5.scdemo.local
EncryptionInfo : VMware.Vsan.Views.VsanHostEncryptionInfo
OverallKmsHealth : green
KmsHealth : {10.127.75.113}
AesniEnabled : True

Hostname : sc4.scdemo.local
EncryptionInfo : VMware.Vsan.Views.VsanHostEncryptionInfo

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 113

OverallKmsHealth : green
KmsHealth : {10.127.75.113}
DiskResults : {VMware.Vsan.Views.VsanDiskEncryptionHealth,
VMware.Vsan.Views.VsanDiskEncryptionHealth}
AesniEnabled : True

Hostname : sc1.scdemo.local
EncryptionInfo : VMware.Vsan.Views.VsanHostEncryptionInfo
OverallKmsHealth : green
KmsHealth : {10.127.75.113}
DiskResults : {VMware.Vsan.Views.VsanDiskEncryptionHealth,
VMware.Vsan.Views.VsanDiskEncryptionHealth}
AesniEnabled : True

Hostname : sc3.scdemo.local
EncryptionInfo : VMware.Vsan.Views.VsanHostEncryptionInfo
OverallKmsHealth : green
KmsHealth : {10.127.75.113}
DiskResults : {VMware.Vsan.Views.VsanDiskEncryptionHealth,
VMware.Vsan.Views.VsanDiskEncryptionHealth}
AesniEnabled : True

Hostname : sc2.scdemo.local
EncryptionInfo : VMware.Vsan.Views.VsanHostEncryptionInfo
OverallKmsHealth : green
KmsHealth : {10.127.75.113}
DiskResults : {VMware.Vsan.Views.VsanDiskEncryptionHealth,
VMware.Vsan.Views.VsanDiskEncryptionHealth}
AesniEnabled : True

Hostname : sc6.scdemo.local
EncryptionInfo : VMware.Vsan.Views.VsanHostEncryptionInfo
OverallKmsHealth : green
KmsHealth : {10.127.75.113}
DiskResults : {VMware.Vsan.Views.VsanDiskEncryptionHealth,
VMware.Vsan.Views.VsanDiskEncryptionHealth}
AesniEnabled : True

The DiskResults sub-property shows Disk Health information. Looking
closely at one of the hosts

PS /> $Host4 = ($EncryptionHealth.HostResults | Where-Object {$_.DiskResults} | Where-
Object {$_.Hostname -eq "sc4.scdemo.local"})
PS /> $Host4.DiskResults

DiskHealth EncryptionIssues
---------- ----------------
VMware.Vsan.Views.VsanPhysicalDiskHealth
VMware.Vsan.Views.VsanPhysicalDiskHealth

Diving further into the disk health entries (abbreviated for space)
shows disk encryption related information:

PS /> $Host4.DiskResults.DiskHealth

Name : naa.6000c29e4b94409f19aa16af7295c50c
Uuid : 5263794a-f740-8718-0e91-b0ba6bf5a56a
EncryptionEnabled : True
KmsProviderId : KMS
KekId : 3e78ba61-20c9-11e9-937e-005056011b78
DekGenerationId : 9
EncryptedUnlocked : True

Name : naa.6000c291ed81e3db71e12f4e2700a825
Uuid : 52a3cff5-8ad3-a59e-0f2f-ec9f13874329
EncryptionEnabled : True
KmsProviderId : KMS

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 114

KekId : 3e78ba61-20c9-11e9-937e-005056011b78
DekGenerationId : 9
EncryptedUnlocked : True

Also, encryption information for the host can be retrieved.

PS /> $Host4.EncryptionInfo

Enabled : True
KekId : 3e78ba61-20c9-11e9-937e-005056011b78
HostKeyId : c5060727-19dd-11e9-937e-005056011b78
KmipServers : {VMware.Vim.KeyProviderId}
KmsServerCerts : {CC:20:75:D8:3A:D1:2C:94:D9:CD:75:3F:5D:D9:02:B0:CF:BD:BB:9F}
ClientKey : 2dac1e2746b1726f56cb3d72c0f935aee158c4aa
ClientCert : 7B:FD:FD:AA:DF:C2:98:C6:3B:C7:D4:47:1A:35:4E:EE:A2:95:A5:2D
DekGenerationId : 9
Changing : False
EraseDisksBeforeUse : False

Each of these can be easily reported on.

Creating a report to show the encryption state of a vSAN cluster can
pull each of these pieces of information together.

Enumerate the cluster and store it
$Cluster = Get-Cluster -Name “vSAN”

vSAN Cluster Health
$VsanHealth = Get-VsanView -Id VsanVcClusterHealthSystem-vsan-cluster-health-system

#Grab our Encryption Health Information
$EncryptionHealth = $VsanHealth.VsanQueryVcClusterHealthSummary(
$Cluster.ExtensionData.MoRef,$null,$null,$null,
@('encryptionHealth'),$null,"defaultView").EncryptionHealth

Output the General Health of the Cluster
Write-Host " Overall Health: "$EncryptionHealth.OverallHealth
Write-Host " Configuration Health: "$EncryptionHealth.ConfigHealth
Write-Host " KMS Health: "$EncryptionHealth.KmsHealth
Write-Host " KMS Server: "$EncryptionHealth.VcKmsResult.KmsProviderId
Write-Host "---"
Write-Host " Per Host Results"
Write-Host "---"
ForEach ($VMHost in ($Cluster|Get-VMHost|Sort-Object -Property Name)) {
 $HostHealth = $EncryptionHealth.HostResults | Where-Object {$_.Hostname -eq $VMHost}
 Write-Host "****** Host:"$VMHost
 Write-Host " Overall KMS Health: "$HostHealth.OverallKmsHealth
 Write-Host " AES-NI Enabled: "$HostHealth.AesniEnabled
 Write-Host " Disk Status:"

 Foreach ($Disk in $HostHealth.DiskResults.DiskHealth) {
 Write-Host " * Disk: "$Disk.Name
 Write-Host " ** Encryption Enabled: "$Disk.EncryptionEnabled
 Write-Host " ** KMS: "$Disk.KmsProviderId
 Write-Host " ** KekId: "$Disk.KekId
 Write-Host " ** DekGeneration: "$Disk.DekGenerationId
 }
 Write-Host " --"
}

A more elaborate version of this script can be found at
https://code.vmware.com/samples/2783

https://code.vmware.com/samples/2783/

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 115

Appendix A – PowerCLI samples for RVC commands
Since the initial releases of vSAN, the Ruby vSphere Console (RVC) has
been used as a tool to manage many vSAN tasks that haven’t been
exposed in the vSphere Client.

To use the RVC, administrators could log into a vCenter Server
Appliance, or use a remote console, to perform these tasks. The RVC
commands for vSAN are powerful and easy to use but have little
extensibility or opportunity to work with operations outside of the RVC
session.

PowerCLI releases over the past several years have provided cmdlets
or views that expose much of the same capabilities as many of the RVC
commands.

Some PowerCLI cmdlets directly align with RVC commands, while other
RVC commands require a bit of scripting.

This appendix contains many of the common RVC commands along
with PowerCLI cmdlets or sample scripts to accomplish the same tasks.

RVC Script vsan.apply_license_to_cluster

Function Apply a vSAN License to a vSAN Cluster

PowerCLI Code: (https://code.vmware.com/samples/6407)

Get the License Manager View & assign it to $LicMgr
$LicMgr = Get-View `
$global:DefaultVIServer.ExtensionData.Content.LicenseManager

Get the LicenseAssignmentManager so a license can be assigned
$LicAsnMgr= Get-View $LicMgr.LicenseAssignmentManager

Get the Managed Object Reference for the vSAN Cluster
so the license can be applied to it.
$ClusCompRes = (Get-Cluster -Name $Cluster | Get-View)

Retrieve a list of the current vSAN licenses added to vCenter
$VsanLics = ($LicMgr).Where{$_.EditionKey -like “vsan.*”}

Determine whether the license is already present or not in vCenter
if (-Not $License -in $VsanLics.LicenseKey) {
 $LicMgr.AddLicense($License,$null)
}

Assign the license to the vSAN Cluster
$LicAsnMgr.UpdateAssignedLicense($ClusCompResource.Moref.value,$License
,"vSAN")

RVC Script vsan.check_limits

Function This command displays resource information and is useful for
ensuring that vSAN is operating within its resource limits.

https://code.vmware.com/samples/6407

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 116

PowerCLI Code: (https://github.com/lamw/vghetto-
scripts/blob/master/powershell/VSANCheckLimits.ps1)

(Test-VsanClusterHealth -Cluster "Cluster").LimitHealth.HostResult |ft

RVC Script vsan.cluster_info

Function Print vSAN config info about a vSAN cluster

PowerCLI Code: (https://code.vmware.com/samples/6577)

Retrieve the vSAN Cluster configuration
$VsanCluster = Get-VsanClusterConfiguration -Cluster “Clustername”

If ($VsanCluster.StretchedClusterEnabled -eq $True) {

 # Print the vSAN Witness Host Information
 $WitHost = $VsanCluster.WitnessHost

 Write-Host "Host:" $WitHost.Name
 Write-Host " Product:" $WitHost.Version ", Build:" $WitHost.Build
 $WitnessEsxCli = Get-EsxCli -VMHost $WitHost.Name -V2
 $WitnessClusterGet = $WitnessEsxCli.vsan.cluster.get.invoke()
 Write-Host " Cluster info:"
 Write-Host " Cluster role:" $WitnessClusterGet.LocalNodeState
 Write-Host " Cluster UUID:" $WitnessClusterGet.SubClusterUUID
 Write-Host " Node UUID :" $WitnessClusterGet.LocalNodeUUID
 Write-Host " Node Type :" $WitnessClusterGet.LocalNodeType
 Write-Host " Storage info:"
 Write-Host " Disk Mappings:"
 Write-Host " Cache Tier :" (($WitHost | Get-VsanDiskGroup | Get-
VsanDisk).Where{$_.IsCacheDisk -eq $True}).CanonicalName
 Write-Host " Capacity Tier:" (($WitHost | Get-VsanDiskGroup | Get-
VsanDisk).Where{$_.IsCacheDisk -ne $True}).CanonicalName
 Write-Host " Fault Domain Info:" -ForegroundColor Green
 Write-Host " " (Get-VsanFaultDomain -VMhost $WitHost)
 Write-Host " Network Info:" -ForegroundColor Green
 $WitHostAdapter = ($WitHost | Get-
VMHostNetworkAdapter).Where{$_.VsanTrafficEnabled -eq $True}
 If ($WitHostAdapter) {
 Write-Host " Adapter: " $WitHostAdapter.Name "(" $WitHostAdapter.IP
")"
 } else {Write-Host " Adapter: "}
}

Retrieve all of the vSAN Data Nodes in the Cluster
$ClusterHosts = Get-Cluster -Name $Cluster | Get-VMHost | Sort-Object
Name

Foreach ($ClusterHost in $ClusterHosts) {
 # Print the vSAN Witness Host Information
 $CurrHost = $ClusterHost.Name

 Write-Host "Host:" $ClusterHost.Name " " -ForegroundColor Green
 Write-Host " Product:" $ClusterHost.Version", Build:"
$ClusterHost.Build
 $ClusterHostEsxCli = Get-EsxCli -VMHost $ClusterHost.Name -V2

https://github.com/lamw/vghetto-scripts/blob/master/powershell/VSANCheckLimits.ps1
https://github.com/lamw/vghetto-scripts/blob/master/powershell/VSANCheckLimits.ps1
https://code.vmware.com/samples/6577

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 117

 $ClusterHostInfo = $ClusterHostEsxCli.vsan.cluster.get.invoke()
 Write-Host " Cluster info: " -ForegroundColor Green
 Write-Host " Cluster role: " $ClusterHostInfo.LocalNodeState
 Write-Host " Cluster UUID: " $ClusterHostInfo.SubClusterUUID
 Write-Host " Node UUID : " $ClusterHostInfo.LocalNodeUUID
Write-Host " Node Type : " $ClusterHostInfo.LocalNodeType
 Write-Host " Storage info:" -ForegroundColor Green
 Write-Host " Disk Mappings: "
 Foreach ($DiskGroup in (Get-VsanDiskGroup -VMHost $CurrHost)) {
 $CurrentDiskGroup = $DiskGroup | Get-VsanDisk | Sort-Object -
Property IsCacheDisk -Descending
 Foreach ($Disk in $CurrentDiskGroup) {
 If ($Disk.IsCacheDisk -eq $true) {
 Write-Host " Cache Tier : " -NoNewline}
 else {Write-Host " Capacity Tier: " -NoNewline}
 Write-Host $Disk.CanonicalName
 }
 Write-Host " Fault Domain Info:" -ForegroundColor Green
 Write-Host " " (Get-VsanFaultDomain -VMhost $ClusterHost)
 Write-Host " Network Info:" -ForegroundColor Green
 $HostAdapter = ($ClusterHost | Get-
VMHostNetworkAdapter).Where{$_.VsanTrafficEnabled -eq $True}
 If ($HostAdapter) {
 Write-Host " Adapter: " $HostAdapter.Name "(" $HostAdapter.IP ")
- vSAN Traffic"
 } else {
 Write-Host " Adapter: "
 }
 $WitnessTrafficAdapter =
($ClusterHostEsxCli.vsan.network.list.invoke()).Where{$_.TrafficType -
eq "witness"}
 If ($WitnessTrafficAdapter) {
 $WitnessTrafficIP = (Get-VMHostNetworkAdapter -VMhost
$ClusterHost).Where{$_.DeviceName -eq
$WitnessTrafficAdapter.VmkNicName}
 Write-Host " Adapter: " $WitnessTrafficAdapter.VmkNicName "("
$WitnessTrafficIP.IP ") - Witness Traffic"
 }

 $EncryptionInfo =
($ClusterHostEsxCli.vsan.encryption.info.get.invoke()).Where{$_.Attrib
ute -eq "enabled"}
 Write-Host " Encryption enabled:" $EncryptionInfo.Value
 }
 Write-Host " "
 }
 Write-Host " "

 # Look for any Fault Domains
 $VsanFaultDomains = Get-VsanFaultDomain -Cluster $Cluster
 If ($VsanFaultDomains) {
 Write-Host "Cluster has fault domains configured:"
 Foreach ($FD in $VsanFaultDomains) {
 Write-Host $FD.Name " Fault Domain Hosts:" -NoNewline
 $FdHosts = $FD | Get-VMHost | Sort-Object -Property Name
 Foreach ($FdHost in $FdHosts) { Write-Host $FdHost " " -NoNewline}
 Write-Host " "
 }
 }

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 118

 If ($VsanCluster.StretchedClusterEnabled -eq $True) {
 Write-Host " "
 Write-Host "Stretched Cluster Preferred Fault Domain:"
$VsanCluster.PreferredFaultDomain
 }
}

RVC Script vsan.cluster_set_default_policy

Function Set the Default Storage Policy of a vSAN Cluster

PowerCLI Code: Get-SpbmEntityConfiguration (Get-Cluster -Name
"ClusterName" | Get-Datastore | Where-Object {$_.Type -eq 'vsan'}) |
Set-SpbmEntityConfiguration -Policy (Get-SpbmStoragePolicy -Name
"Storage Policy Name")

RVC Script vsan.debug.mob (host level)

Function Start/Stop the vSAN Managed Object Browser on a Host

PowerCLI Code: Enabling: (Get-EsxCLI -VMhost (Get-VMhost -Name
“hostname") -V2).vsan.debug.mob.start.invoke()

Disabling: (Get-EsxCLI -VMhost (Get-VMhost -Name “hostname") -
V2).vsan.debug.mob.stop.invoke()

RVC Script vsan.disable_vsan_on_cluster

Function Disable vSAN on a cluster

PowerCLI Code: Get-Cluster -Name "Cluster" | Set-Cluster -VsanEnabled
$False -Confirm:$False

RVC Script vsan.disks_info

Function Disable vSAN on a cluster

PowerCLI Code (https://code.vmware.com/samples/6578)

Designate the vSAN Host
$VsanHost = "w3-hs1-050101.eng.vmware.com"

Retrieve the disks for the specified host.
$HostDisks = (Get-ScsiLun -VmHost $VsanHost).Where{$_.LunType -eq
"disk"}

Create the array to put our results in
$DiskInfoResults=@()

https://code.vmware.com/samples/6578

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 119

Enumerate each disk on the specified host
Foreach ($HostDisk in $HostDisks) {
 # Create a custom object to store each disk's properties
 $DiskInfo = New-Object -TypeName PSCustomObject

 Add-Member -InputObject $DiskInfo -MemberType NoteProperty -Name
DisplayName -Value ""
 Add-Member -InputObject $DiskInfo -MemberType NoteProperty -Name
Model -Value ""
 Add-Member -InputObject $DiskInfo -MemberType NoteProperty -Name
Revision -Value ""
 Add-Member -InputObject $DiskInfo -MemberType NoteProperty -Name
IsSSd -Value ""
 Add-Member -InputObject $DiskInfo -MemberType NoteProperty -Name Size
-Value ""
 Add-Member -InputObject $DiskInfo -MemberType NoteProperty -Name
UsedByVsan -Value ""
 Add-Member -InputObject $DiskInfo -MemberType NoteProperty -Name Hba
-Value ""
 Add-Member -InputObject $DiskInfo -MemberType NoteProperty -Name
Controller -Value ""

 # Add each property to the current record that is added to the array
 $DiskInfo.DisplayName = $HostDisk.ExtensionData.DisplayName
 $DiskInfo.Model = $HostDisk.Model
 $DiskInfo.Revision = $HostDisk.ExtensionData.Revision
 $DiskInfo.IsSSD = $HostDisk.IsSSD
 $DiskInfo.Size = [math]::Round($HostDisk.CapacityGB)
 $DiskInfo.UsedByVsan = $HostDisk.VsanStatus

 # Retrieve the HBA name and the name of the controller
 $HbaName = $HostDisk.RuntimeName -Split ":"
 $DiskInfo.Hba = $HbaName[0]
 $DiskInfo.Controller = (Get-VMhostHba -VMhost $VsanHost -Device
$HbaName[0]).Model

 # Add the current record to the results array
 $DiskInfoResults += $DiskInfo
}

Return the array
$DiskInfoResults | Format-Table *

RVC Script vsan.disk_stats

Function Display information about the disks in a host or cluster,
including whether or not it is a magnetic disk or solid state
drive, how many components reside on the disk, disk
capacity, how much is used, if any of it is reserved via the
ObjectSpaceReservation policy setting, if it’s health is OK and
what is the version of the on-disk format.

PowerCLI Code: Courtesy Ray Terrill

https://raw.githubusercontent.com/rayterrill/PowerCLIExtraFunctions/master/VS
AN/ExtraVSANFunctions.ps1

https://raw.githubusercontent.com/rayterrill/PowerCLIExtraFunctions/master/VSAN/ExtraVSANFunctions.ps1
https://raw.githubusercontent.com/rayterrill/PowerCLIExtraFunctions/master/VSAN/ExtraVSANFunctions.ps1

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 120

RVC Script vsan.enable_vsan_on_cluster

Function Enable vSAN on a cluster

PowerCLI Code: Get-Cluster -Name "Cluster" | Set-Cluster -VsanEnabled
$True -Confirm:$False

RVC Script vsan.enter_maintenance_mode

Function Put hosts into maintenance mode

PowerCLI Code: Get-Vmhost -Name "hostname" | Set-VMHost –State
“Maintenance” –VsanDataMigrationMode “EnsureAccessibility”

RVC Script vsan.health.cluster_debug_multicast

Function Debug Multicast for Pre-vSAN 6.6 Clusters

PowerCLI Code: (Test-VsanClusterHealth -Cluster
"ClusterName").NetworkHealth.HostResult |ft

RVC Script vsan.health.cluster_proxy_configure

Function Configure the proxy to access the Internet when using vSAN
CEIP, vSAN Support Assistant & retrieve latest HCL database
online

PowerCLI Code (https://code.vmware.com/samples/6503)

Get the Cluster Object
$VsanCluster = Get-Cluster -Name $Cluster

Setup the vSAN Cluster Health View
$vchs = Get-VsanView -Id VsanVcClusterHealthSystem-vsan-cluster-health-
system

Configure the variable for the vSAN Telemetry
Proxy$VsanTelemetryProxy = New-Object -TypeName
VMware.Vsan.Views.VsanClusterTelemetryProxyConfig

$VsanTelemetryProxy.Host = “proxyhost fqdn or ip”
$VsanTelemetryProxy.Password = “proxy password”
$VsanTelemetryProxy.User = “proxy username”
$VsanTelemetryProxy.Port = “proxy port”

Configure the variable for the vSAN Health
Configuration$VsanClusterConfig = New-Object -Type
VMware.Vsan.Views.VsanClusterHealthConfigs

Set the vSAN Telemetry Proxy to the $VsanTelemetryProxy variable
$VsanClusterConfig.VsanTelemetryProxy = $VsanTelemetryProxy

https://code.vmware.com/samples/6503

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 121

Update the proxy configuration
$vchs.VsanHealthSetVsanClusterTelemetryConfig($VsanCluster.ExtensionDat
a.MoRef,$VsanClusterConfig)

RVC Script vsan.health.cluster_proxy_status

Function Get proxy configuration status for the vSAN Health Service

PowerCLI Code: (Get-VsanView -Id VsanVcClusterHealthSystem-vsan-
cluster-health-system).VsanHealthQueryVsanClusterHealthConfig((Get-
Cluster -Name "Cluster").ExtensionData.MoRef).VsanTelemetryProxy

RVC Script vsan.health.cluster_rebalance

Function Proactive rebalance the vSAN objects on the cluster hosts
based on the vSAN disks usage when the disks are in
imbalance status

PowerCLI Code: Start-VsanClusterRebalance -Cluster “ClusterName”

RVC Script vsan.health.cluster_repair_immediately

Function Triggers immediate repair of objects waiting for an event

PowerCLI Code (https://code.vmware.com/samples/6579)

Retrieve the vSAN Cluster Object
$Cluster = Get-Cluster -Name "StretchedCluster"

Get the Cluster's Managed Object Reference (MoRef)
$ClusterMoRef = $Cluster.ExtensionData.MoRef

If ($Cluster.VsanEnabled -eq $True) {
 # Load the vSAN vC Cluster Health System View
 $ClusHlthSys = Get-VsanView -Id "VsanVcClusterHealthSystem-vsan-
cluster-health-system"

 # Invoke the Fix for all objects

$ClusHlthSys.VsanHealthRepairClusterObjectsImmediate($ClusterMoRef,$nul
l)
} else {
 Write-Host $VsanCluster "does not have vSAN enabled"
}

RVC Script vsan.health.cluster_status

Function Check the status of the Health Service on each host

https://code.vmware.com/samples/6579

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 122

PowerCLI Code: (Test-VsanClusterHealth -Cluster
"ClusterName").HealthSystemVersion.HostResult

RVC Script vsan.health.hcl_update_db

Function Updates the DB, from local file, URL or vmware.com

PowerCLI Code: Update-VsanHclDatabase (from vmware.com)
Update-VsanHclDatabase -FilePath “path/to/file/all.json” (offline file)

RVC Script vsan.health.health_check_interval_configure

Function Configure the health check interval (in minutes) for the cluster

PowerCLI Code: Get-VsanClusterConfiguration -Cluster $Cluster |Set-
VsanClusterConfiguration -HealthCheckIntervalMinutes 60

RVC Script vsan.health.health_check_interval_status

Function Get the current vSAN Health Check interval status

PowerCLI Code: Get-VsanClusterConfiguration -Cluster $Cluster |Select-
Object Cluster,HealthCheckIntervalMinutes

RVC Script vsan.health.silent_health_check_configure

Function Configure silent health check list for the given cluster

PowerCLI Code: Courtesy William Lam:
https://raw.githubusercontent.com/lamw/vghetto-
scripts/master/powershell/VSANHealthChecks.ps1

RVC Script vsan.health.silent_health_check_status

Function Get the current silent health check list for the given cluster

PowerCLI Code: Courtesy William Lam:
https://raw.githubusercontent.com/lamw/vghetto-
scripts/master/powershell/VSANHealthChecks.ps1

RVC Script vsan.host_evacuate_data

Function Evacuate data from a vSAN host & prevent it from storing
any data

PowerCLI Code

https://raw.githubusercontent.com/lamw/vghetto-scripts/master/powershell/VSANHealthChecks.ps1
https://raw.githubusercontent.com/lamw/vghetto-scripts/master/powershell/VSANHealthChecks.ps1
https://raw.githubusercontent.com/lamw/vghetto-scripts/master/powershell/VSANHealthChecks.ps1
https://raw.githubusercontent.com/lamw/vghetto-scripts/master/powershell/VSANHealthChecks.ps1

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 123

Set a timeout value
$timeout = 90

Create a maintenance specification
$MaintSpec = New-Object -TypeName VMware.Vim.HostMaintenanceSpec
$MaintSpec.VsanMode = New-Object VMware.Vim.VsanHostDecommissionMode
$MaintSpec.VsanMode.ObjectAction = "ensureObjectAccessibility"
could be ‘evacuateAllData’ or ‘noAction’

(Get-View (Get-VMhost "vsan
host").ExtensionData.ConfigManager.vsanSystem).EvacuateVsanNode_Task($M
aintSpec,$timeout)

RVC Script vsan.host_exit_evacuation

Function Allow a vSAN host to store data

PowerCLI Code: (Get-View (Get-VMhost
"hostname").ExtensionData.ConfigManager.vsanSystem).RecommissionVsanNod
e_Task()

RVC Script vsan.host_info

Function Print vSAN info about a host

PowerCLI Code

Print the vSAN Witness Host Information
$CurrentHost = Get-VMhost -Name “hostname”

Write-Host "Host:" $CurrentHost.Name " "
Write-Host " Product:" $CurrentHost.Version ", Build:"
$CurrentHost.Build

Setup EsxCli for the Current Host
$CurrentEsxCli = Get-EsxCli -VMHost $CurrentHost.Name -V2

Get the Cluster Details
$HostClusterInfo = $CurrentEsxCli.vsan.cluster.get.invoke()
Write-Host " Cluster info:"
Write-Host " Cluster role:" $HostClusterInfo.LocalNodeState
Write-Host " Cluster UUID:" $HostClusterInfo.SubClusterUUID
Write-Host " Node UUID :" $HostClusterInfo.LocalNodeUUID
Write-Host " Member UUIDs: " $HostClusterInfo.SubClusterMemberUUIDs
Write-Host " Member Hosts: "
$HostClusterInfo.SubClusterMemberHostNames
Write-Host " Node Type :" $HostClusterInfo.LocalNodeType
Write-Host " Storage info:"
Write-Host " Disk Mappings:"

Enumerate all the Disk Groups, and sorting by Cache Device first.
Foreach ($DiskGroup in (Get-VsanDiskGroup -VMHost $CurrentHost)) {
 $CurrentDiskGroup = $DiskGroup | Get-VsanDisk | Sort-Object -
Property IsCacheDisk -Descending
 Foreach ($Disk in $CurrentDiskGroup) {

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 124

 If ($Disk.IsCacheDisk -eq $true) {
 Write-Host " Cache Tier : " -NoNewline
 } else {
 Write-Host " Capacity Tier: " -NoNewline
 }
 $DiskCapacity = [math]::Round($Disk.CapacityGB)
 Write-Host $Disk.CanonicalName " - Size:" -NoNewLine
 Write-Host $DiskCapacity "GB" -NoNewLine
 Write-Host " - Disk Version:" $Disk.DiskFormatVersion
 }
 }

 # Fault Domain Information
 Write-Host " Fault Domain Info:"
 Write-Host " " (Get-VsanFaultDomain -VMhost $CurrentHost)

 # Retrieve any Networking Information
 Write-Host " Network Info:" -ForegroundColor Green

 # Retrieve any VMkernel interfaces that have vSAN Traffic Tagged
 $HostAdapter = ($CurrentHost | Get-
VMHostNetworkAdapter).Where{$_.VsanTrafficEnabled -eq $True}

 If ($HostAdapter) {
 Write-Host " Adapter: " $HostAdapter.Name "(" $HostAdapter.IP ")
- vSAN Traffic"
 } else {
 Write-Host " Adapter: "}

 # Attempt to return any interfaces that have vSAN Traffic Enabled -
 #Will not work on a vSAN Witness Host

 Try {
 $WitnessAdapter =
($CurrentEsxCli.vsan.network.list.invoke()).Where{$_.TrafficType -eq
"witness"}

 If ($WitnessAdapter) {
 $WitnessIP = (Get-VMHostNetworkAdapter -VMhost
$CurrentHost).Where{$_.DeviceName -eq $WitnessAdapter.VmkNicName}
 Write-Host " Adapter: " $WitnessAdapter.VmkNicName "("
$WitnessIP.IP ") - Witness Traffic"
 }
} Catch {}

 # Attempt to return the Encryption State - Will not work on a vSAN
Witness Host
 Try {
 $EncryptionInfo =
($CurrentEsxCli.vsan.encryption.info.get.invoke()).Where{$_.Attribute -
eq "enabled"}
 Write-Host " Encryption enabled:" $EncryptionInfo.Value
 } Catch {}

 Write-Host " "

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 125

RVC Script vsan.object_info (also vsan.vm_object_info)

Function Fetch information about a vSAN object

PowerCLI Code: (https://code.vmware.com/samples/4710)

Retrieve the vSAN Cluster configuration
$VsanCluster = Get-VsanClusterConfiguration -Cluster $Cluster

Get the vSAN Object by Uuid
$VsanObject = Get-VsanObject -Id $Uuid

Get the vSAN Object’s Policy
$ObjectPolicy = $VsanObject.StoragePolicy

Get the SPBM Spolicy Object
$StoragePolicy = Get-SpbmStoragePolicy -Name $ObjectPolicy

Write the Object & Policy
Write-Host "vSAN Object :"$VsanObject.Id
Write-Host "Storage Policy :"$ObjectPolicy

Write the rules of the Storage Policy
Write-Host "Storage Policy Rules:"

Put the rules in an array
$StoragePolicyRules = $StoragePolicy.AnyOfRuleSets.AllOfRules

Only display the rules that aren’t false
Foreach ($Rule in ($StoragePolicyRules).Where{$_.Value -ne $False}) {
 Write-Host $Rule.Capability $Rule.Value}

Get all of the components for the object
$VsanComponents = Get-VsanComponent -VsanObject $VsanObject

Loop through each of the components
ForEach ($Component in $VsanComponents) {
 Write-Host "Component:" $Component.Uuid -NoNewLine
 Write-Host " -Type:" $Component.Type -NoNewline
 Write-Host " -Status:" $Component.Status -NoNewLine
 Write-Host " -Host:" $Component.VsanDisk.VsanDiskGroup.VMHost -
NoNewline
 Write-Host " -Disk:" $Component.VsanDisk
}

RVC Script vsan.ondisk_upgrade (also vsan.v2_ondisk_upgrade)

Function Upgrade the cluster On-Disk Format to the latest version
supported by the cluster.

PowerCLI Code: Start-VsanclusterDiskUpdate -Cluster “ClusterName” -
AllowReducedRedundancy $true/$false

RVC Script vsan.resync_dashboard (also vsan.perf.resync_dashboard)

https://code.vmware.com/samples/4710

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 126

Function Display the re-syncing of the components that are being
rebuilt elsewhere in the cluster

PowerCLI Code: Get-VsanResyncingComponent -Cluster “ClusterName”

RVC Script vsan.stretchedcluster.config_witness

Function Configure the vSAN Witness Host for a 2 Node or Stretched
Cluster

PowerCLI Code: Get-VsanClusterConfiguration -Cluster “ClusterName” |
Set-VsanClusterConfiguration -StretchedClusterEnabled $True -
PreferredFaultDomain (Get-VsanFaultDomain -Name “Preferred”) -
WitnessHost “witness host name” -WitnessHostCacheDisk
mpx.vmhba1:C0:T2:L0 -WitnessHostCapacityDisk mpx.vmhba1:C0:T1:L0

*The vSAN Witness Cache/Capacity disks illustrated in this example are for the
Normal & Tiny vSAN Witness Appliance Profiles

RVC Script vsan.stretchedcluster.remove_witness

Function Remove a the vSAN Witness Host from a 2 Node or
Stretched vSAN Cluster

PowerCLI Code: Get-VsanClusterConfiguration -Cluster “ClusterName” |
Set-VsanClusterConfiguration -StretchedClusterEnabled $False

RVC Script vsan.stretchedcluster.witness_info

Function Show witness host information for a 2 Node or Stretched
vSAN Cluster

PowerCLI Code: (https://code.vmware.com/samples/6576)

#Witness Host Name, Preferred Fault Domain:
Get-VsanClusterConfiguration -Cluster "Cluster" |Select-Object
Cluster,WitnessHost,PreferredFaultDomain

#Witness Host UUID & Unicast Agent Address:
((Get-Cluster -Name "Cluster" | Get-VMHost | Select-Object -First 1 |
Get-EsxCli -V2
).vsan.cluster.unicastagent.list.Invoke()).Where{$_.IsWitness -eq 1}|
Select-Object IPAddress,NodeUuid

https://code.vmware.com/samples/6576

POWERCLI COOKBOOK FOR VSAN V1.7

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products
are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 127

Document Summary
The code examples listed in this document are for the purpose of
illustrating some capabilities using PowerCLI with the vSAN. These
code examples are not supported by VMware.

Be sure to visit the VMware Code at https://code.vmware.com for
more examples of using PowerCLI with vSphere and vSAN.

References
Additional Documentation
For more information about VMware vSAN, please visit the product
pages at http://www.vmware.com/products/vsan.html

Below are some links to online documentation:

Storage Hub:
https://storagehub.vmware.com/

Virtual Blocks:
http://virtualblocks.com/

VMware vSAN Community:
https://communities.vmware.com/community/vmtn/vsan

VMware PowerCLI:
https://code.vmware.com/web/dp/tool/vmware-powercli/

VMware API Explorer:
https://code.vmware.com/apis

Support Knowledge base:
https://kb.vmware.com/

VMware Contact Information
For additional information or to purchase VMware Virtual SAN,
VMware’s global network of solutions providers is ready to assist. If
you would like to contact VMware directly, you can reach a sales
representative at 1-877-4VMWARE (650-475-5000 outside North
America) or email sales@vmware.com. When emailing, please include
the state, country, and company name from which you are inquiring.

About the Author
This cookbook was put together using content from various resources
from Virtual SAN Engineering.

Jase McCarty is a Staff Technical Marketing Architect at VMware with a
focus on storage solutions. He has been in the Information Technology
field for over 25 years, with roles on both the customer and vendor
side. Jase has Co-Authored two books on VMware virtualization,
routinely speaks technology focused user group meetings, and has
presented at several industry conferences including VMworld.

Follow Jase on Twitter: @jasemccarty

https://www.vmware.com/products/vsan.html
https://storagehub.vmware.com/
http://virtualblocks.com/
https://communities.vmware.com/community/vmtn/vsan
https://code.vmware.com/web/dp/tool/vmware-powercli/
https://code.vmware.com/apis
https://kb.vmware.com/

	Introduction
	Expectations
	vSAN Management API
	Reliance on additional VMware APIs

	Getting Started
	Tool Selection
	PowerShell or PowerShell Core?
	Coding Tools?
	Using a text editor
	Using an Integrated Scripting Environment

	Installing PowerShell
	Installing PowerCLI

	Configuration Recipes
	Enabling vSAN on a vSphere Cluster
	Adding hosts to a vSAN cluster
	New Hosts
	Existing Hosts
	Converting a Cluster to a Stretched Cluster

	Configuring vSAN Networking
	Tagging an existing VMkernel adapter
	Creating a new VMkernel Adapter on a vSphere Standard Switch
	Using a vSphere Distributed Switch for vSAN
	Upgrading a vSphere Distributed Switch and enabling NIOC
	Setting Static Routes for Layer 3 vSAN Routing
	Tagging a vSAN Interface for vSAN Witness Traffic

	Claiming Disks on vSAN Hosts
	vSAN Performance Service
	vSAN Build Recommendation Credentials
	Deduplication and Compression
	Enabling Deduplication and Compression

	vSAN Encryption
	Enabling vSAN Encryption

	Configuring NTP
	Configuring vSphere HA
	Configuring vSphere DRS
	Configuring Guest TRIM & UNMAP Support
	Setting the Default Storage Policy for a vSAN Datastore
	Assigning a vSAN License to a Cluster
	Setting Automatic Rebalance Options in vSAN 6.7 Update 3

	Operational Recipes
	Host Maintenance & Tasks
	Host Maintenance Mode What-If in vSAN 6.7 U3
	Installing a VIB on a vSAN Host

	vSAN Storage Policies
	Creating new vSAN Storage Polices
	Backing up vSAN Storage Policies
	Restoring vSAN Storage Policies
	Applying vSAN Storage Policies to a VM or its Drives
	Changing the Storage Policy for All Objects with a Given Policy

	vSAN Stretched Cluster Operations
	Patching a vSAN Stretched Cluster
	Swapping the vSAN Witness Host

	vSAN Encryption Operations
	Shallow Rekey
	Changing the KMS Server
	Deep Rekey

	Reporting Recipes
	Disk Utilization

	Appendix A – PowerCLI samples for RVC commands
	vsan.apply_license_to_cluster
	vsan.check_limits
	vsan.cluster_info
	vsan.cluster_set_default_policy
	vsan.debug.mob (host level)
	vsan.disable_vsan_on_cluster
	vsan.disks_info
	vsan.disk_stats
	vsan.enable_vsan_on_cluster
	vsan.enter_maintenance_mode
	vsan.health.cluster_debug_multicast
	vsan.health.cluster_proxy_configure
	vsan.health.cluster_proxy_status
	vsan.health.cluster_rebalance
	vsan.health.cluster_repair_immediately
	vsan.health.cluster_status
	vsan.health.hcl_update_db
	vsan.health.health_check_interval_configure
	vsan.health.health_check_interval_status
	vsan.health.silent_health_check_configure
	vsan.health.silent_health_check_status
	vsan.host_evacuate_data
	vsan.host_exit_evacuation
	vsan.host_info
	vsan.object_info (also vsan.vm_object_info)
	vsan.ondisk_upgrade (also vsan.v2_ondisk_upgrade)
	vsan.resync_dashboard (also vsan.perf.resync_dashboard)
	vsan.stretchedcluster.config_witness
	vsan.stretchedcluster.remove_witness
	vsan.stretchedcluster.witness_info
	Document Summary
	References
	Additional Documentation
	VMware Contact Information
	About the Author

